Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphorescence aromatic

De Groot, M.S. and Van der Waals, J.H. 1960. Paramagnetic resonance in phosphorescent aromatic hydrocarbons. II Determination of zero-field splitting from solution spectra. Molecular Physics 3 190-200. [Pg.233]

Triplet nitrogen (N2) reacts with non-phosphorescent aromatic and heterocyclic compounds and induces phosphorescence.183... [Pg.76]

Van der Waals JH, de Groot MS (1959) Paramagnetic resonance in phosphorescent aromatic hydrocarbons. I. Naphthalene. Mol Phys 2 333-340... [Pg.61]

Organic Analytes As noted earlier, organic compounds containing aromatic rings generally are fluorescent, but aromatic heterocycles are often phosphorescent. Many important biochemical, pharmaceutical, and environmental compounds are aromatic and, therefore, can be analyzed quantitatively by fluorometry... [Pg.429]

The phosphorescence lifetimes for the p-aminobenzoic acid anion adsorbed on sodium acetate as a function of temperature were evaluated in a manner similar to the one discussed by Oelkrug and coworkers (,28-30) for polycyclic aromatic hydrocarbons adsorbed on y-alumina. In general, the solid-surface phosphorescence lifetime cutrves for the anion of p-aminobenzoic acid followed Equation 2. [Pg.162]

Fluorescence is much more widely used for analysis than phosphorescence. Yet, the use of fluorescent detectors is limited to the restricted set of additives with fluorescent properties. Fluorescence detection is highly recommended for food analysis (e.g. vitamins), bioscience applications, and environmental analysis. As to poly-mer/additive analysis fluorescence and phosphorescence analysis of UV absorbers, optical brighteners, phenolic and aromatic amine antioxidants are most recurrent [25] with an extensive listing for 29 UVAs and AOs in an organic solvent medium at r.t. and 77 K by Kirkbright et al. [149]. [Pg.322]

Stabilisers are usually determined by a time-consuming extraction from the polymer, followed by an IR or UV spectrophotometric measurement on the extract. Most stabilisers are complex aromatic compounds which exhibit intense UV absorption and therefore should show luminescence in many cases. The fluorescence emission spectra of Irgafos 168 and its phosphate degradation product, recorded in hexane at an excitation wavelength of 270 nm, are not spectrally distinct. However, the fluorescence quantum yield of the phosphate greatly exceeds that of the phosphite and this difference may enable quantitation of the phosphate concentration [150]. The application of emission spectroscopy to additive analysis was illustrated for Nonox Cl (/V./V -di-/i-naphthyl-p-phcnylene-diamine) [149] with fluorescence ex/em peaks at 392/490 nm and phosphorescence ex/em at 382/516 nm. Parker and Barnes [151] have reported the use of fluorescence for the determination of V-phenyl-l-naphthylamine and N-phenyl-2-naphthylamine in extracted vulcanised rubber. While pine tar and other additives in the rubber seriously interfered with the absorption spectrophotometric method this was not the case with the fluoromet-ric method. [Pg.322]

Backstrom and Sandros<54-55) found that the phosphorescence of biacetyl in benzene solution at room temperature was quenched at a diffusion-controlled rate by aromatic hydrocarbons when the triplet energy of the hydrocarbon was sufficiently below that of biacetyl. [Pg.150]

Thus we see that in molecules possessing ->- 77 excited states inter-combinational transitions (intersystem crossing, phosphorescence, and non-radiative triplet decay) should be efficient compared to the same processes in aromatic hydrocarbons. This conclusion is consistent with the high phosphorescence efficiencies and low fluorescence efficiencies exhibited by most carbonyl and heterocyclic compounds. [Pg.436]

We (fl) have reported the photophysical processes of a series of model esters of PET, and tentatively assigned the fluorescence and phosphorescence of the aromatic esters as (n, tt ) transitions, respectively. We (9) also performed an extensive study of the photophysical processes available to dimethyl terephthalate (DMT) in order to relate this monomeric species to the PET polymer. In 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) (Table I), DMT has three major,absorptions which are according to Platt, s notation 191 nm, A- B, e = 40,620 1 mole" cm"1 244 nm, A-dLaT e = 23,880 1 mole-) cm" 289 nm, A U, e = 1780 1 mole")cm. ... [Pg.241]

Ellis DW (1979) Analysis of aromatic compounds in water using fluoresence and phosphorescence. PB report no. 212268. National Technical Information Service, Springfield, VA, USA... [Pg.454]

P-type delayed fluorescence is so called because it was first observed in pyrene. The fluorescence emission from a number of aromatic hydrocarbons shows two components with identical emission spectra. One component decays at the rate of normal fluorescence and the other has a lifetime approximately half that of phosphorescence. The implication of triplet species in the mechanism is given by the fact that the delayed emission can be induced by triplet sensitisers. The accepted mechanism is ... [Pg.73]

Of particular interest in the application of cyclodextrins is the enhancement of luminescence from molecules when they are present in a cyclodextrin cavity. Polynuclear aromatic hydrocarbons show virtually no phosphorescence in solution. If, however, these compounds in solution are encapsulated with 1,2-dibromoethane (enhances intersystem crossing by increasing spin-orbit coupling external heavy atom effect) in the cavities of P-cyclodextrin and nitrogen gas passed, intense phosphorescence emission occurs at room temperature. Cyclodextrins form complexes with guest molecules, which fit into the cavity so that the microenvironment around the guest molecule is different from that in... [Pg.220]

El-Sayed 28> has reported on the phosphorescence spectrum of [2.2]paracyclophane. The emission differs both in wavelength ( 4700 A) and in duration (3.3 s) from that of benzene ( 3400 A, 6 s) hence a favorable intersystem crossing from the lowest singlet to the emitting triplet state was inferred. The emission spectrum also indicates that interactions take place between the two aromatic nuclei in the triplet state. [Pg.77]

D. J. Morantz and J. W. Wigley, The contrasting phosphorescence decay kinetics of diacetyl and aromatic ketone phosphors in polymeric matrices, Polymer Communication 26, 170-171 (1985). [Pg.293]

The aromatic amino acids each have two major absorption bands in the wavelength region between 200 and 300 nm (see reviews by Beaven and Holiday(13) and Wetlaufer(14). The lower energy band occurs near 280 nm for tryptophan, 277 nm for tyrosine, and 258 nm for phenylalanine, and the extinction coefficients at these wavelengths are in the ratio 27 7 l.(14) As a result of the spectral distributions and relative extinction coefficients of the aromatic amino acids, tryptophan generally dominates the absorption, fluorescence, and phosphorescence spectra of proteins that also contain either of the other two aromatic amino acids. [Pg.2]

The most direct demonstration of triplet-triplet energy transfer between the aromatic amino acids is the ODMR study by Rousslang and Kwiram on the tryptophanyl-tyrosinate dipeptide.(57) Since the first excited singlet state of tyrosinate is at lower energy than that of tryptophan, it is possible to excite tyrosinate preferentially. The phosphorescence of this dipeptide, however, is characteristic of tryptophan, which is consistent with the observation that the triplet state of tyrosinate is at higher energy than that of tryptophan, making tryptophan the expected triplet acceptor. [Pg.16]

Long-lived luminescence from protein-containing materials was reported many years ago. Debye and Edwards reported that a bluish light was emitted from proteins at cryogenic temperatures after illumination/11 Work in the 1950s established the relationship between fluorescence and the long-lived phosphorescence for the aromatic amino acids in proteins/2-41 Konev in his classic work Fluorescence and Phosphorescence of Proteins and Nucleic Acids summarized this early history.1(5)... [Pg.113]


See other pages where Phosphorescence aromatic is mentioned: [Pg.29]    [Pg.29]    [Pg.426]    [Pg.895]    [Pg.45]    [Pg.961]    [Pg.163]    [Pg.301]    [Pg.129]    [Pg.135]    [Pg.135]    [Pg.150]    [Pg.142]    [Pg.104]    [Pg.88]    [Pg.89]    [Pg.109]    [Pg.462]    [Pg.399]    [Pg.405]    [Pg.357]    [Pg.58]    [Pg.1]    [Pg.1]    [Pg.5]    [Pg.5]    [Pg.7]    [Pg.72]   
See also in sourсe #XX -- [ Pg.147 ]




SEARCH



Amino acids, aromatic, phosphorescence

Aromatic compounds, phosphorescence

Hydrocarbons, aromatic phosphorescence emissions

Phosphoresce

Phosphorescence

Phosphorescence in Aromatic Molecules with Nonbonding Electrons

Phosphorescence of Aromatic Compounds

Phosphorescent

© 2024 chempedia.info