Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phospholipases/lipases

Eicosanoids, so named because they are all derived from 20-carbon fatty acids, are ubiquitous breakdown products of phospholipids. In response to appropriate stimuli, cells activate the breakdown of selected phospholipids (Figure 25.27). Phospholipase Ag (Chapter 8) selectively cleaves fatty acids from the C-2 position of phospholipids. Often these are unsaturated fatty acids, among which is arachidonic acid. Arachidonic acid may also be released from phospholipids by the combined actions of phospholipase C (which yields diacyl-glycerols) and diacylglycerol lipase (which releases fatty acids). [Pg.829]

Walker, C.H. (1994b). Interactions between pesticides and esterases in humans. In M.I. Mackness and M. Clerc (Eds.) Esterases, Lipases, and Phospholipases from Structure to Clinical Significance. NATO ASI Series. Series A, Life Sciences. New York Plenum Press 91-98. [Pg.373]

Two possible pathways for the biosynthesis of 2-AG have been proposed (1) a phospholipase C (PLC) hydrolysis of membrane phospholipids followed by a second hydrolysis of the resulting 1,2-diacylglycerol by diacylglycerol lipase or (2) a phospholipase Ai (PLA,) activity that generates a lysophospholipid, which in turn is hydrolyzed to 2-AG by lysophospholipase C (Fig. 5) (Piomelli, 1998). Alternative pathways may also exist from either triacylglycerols by a neutral lipase activity or lysophosphatidic acid by a dephosphorylase. The fact that PLC and diacylglycerol lipase inhibitors inhibit 2-AG formation in cortical neurons supports the contention that 2-AG is, at least predominantly, biosynthesized by the PLC pathway (Stella, 1997). However, a mixed pathway may also be plausible. [Pg.106]

Massing U, Eibl H (1994) Substrates for phospholipase C and sphingomyelinase from Bacillus cereus. In Woolley P, Petersen SB (eds) Lipases. Their structure, biochemistry and application. Cambridge University Press, Cambridge, p 225... [Pg.165]

Figure 6.17. Leukotriene formation in neutrophils. Arachidonic acid, which is released from membrane phospholipids by the action of either phospholipase A2 or diacylglycerol lipase (see Fig. 6.13), is oxygenated by 5-lipoxygenase to yield 5 hydroperoxy-6,8,11,14 eicosa-tetraenoic acid (5-HPETE). This is then converted into 5 hydroxy-6,8,11,14 eicosatetra-enoic acid (5-HETE) and leukotriene (LT) A4. LTA4 may then be enzymically converted into LTC4 and LTB4. LTB4 is the major product in activated neutrophils. Figure 6.17. Leukotriene formation in neutrophils. Arachidonic acid, which is released from membrane phospholipids by the action of either phospholipase A2 or diacylglycerol lipase (see Fig. 6.13), is oxygenated by 5-lipoxygenase to yield 5 hydroperoxy-6,8,11,14 eicosa-tetraenoic acid (5-HPETE). This is then converted into 5 hydroxy-6,8,11,14 eicosatetra-enoic acid (5-HETE) and leukotriene (LT) A4. LTA4 may then be enzymically converted into LTC4 and LTB4. LTB4 is the major product in activated neutrophils.
Synthesizing Enzymes Phospholipase D Phospholipase C Diacylglycerol lipase... [Pg.412]

Anandamide is believed to be synthesized from a phospholipid precursor, /V-arachidonoyl-phosphatidylethanolamine, catalysed by phospholipase D (Di Marzo et al. 1998). The other proposed route of synthesis is from condensation of arachidonic acid and ethanolamine, although this has yet to be demonstrated in living cells. 2-AG is formed in a calcium-dependent manner, and mediated by the enzymes phospholipase C and diacylglycerol lipase (Kondo et al. 1998 Stella et al. 1997). [Pg.412]

Various pancreatic enzymes hydrolyze lipids, including lipase with its auxiliary protein colipase (see p. 270), phospholipase A2, and sterol esterase. Bile salts activate the lipidcleaving enzymes through micelle formation (see below). [Pg.268]

MICELLAR SUBSTRATES. Phospholipids in micelles are frequently found to be more active substrates in lipolysis than those phospholipids residing in a lipid bilayer". Dennis first described the use of Triton X-100 to manipulate the amount of phospholipid per unit surface area of a micelle in a systematic analysis of the interfacial interactions of lipases with lipid micelles. Verger and Jain et al have presented cogent accounts of the kinetics of interfacial catalysis by phospholipases. The complexity of the problem is illustrated in the diagram shown in Fig. 2 showing how the enzyme in the aqueous phase can bind to the interface (designated by the asterisk) and then become activated. Once this is achieved, E catalyzes conversion of S to release P. ... [Pg.465]

Selected entries from Methods in Enzymology [vol, page(s)] Detergent-resistant phospholipase Ai from Escherichia coll membranes, 197, 309 phospholipase Ai activity of guinea pig pancreatic lipase, 197, 316 purification of rat kidney lysosomal phospholipase Ai, 197, 325 purification and substrate specificity of rat hepatic lipase, 197, 331 human postheparin plasma lipoprotein lipase and hepatic triglyceride lipase, 197, 339 phospholipase activity of milk lipoprotein lipase, 197, 345. [Pg.554]

Triton X-100 has proved to be of great value in the surface dilution modeb for lipolytic enzyme action. In this experimental strategy, the surface concentration of phospholipid in mixed micelles is reduced by the addition of Triton as a neutral diluent, thereby increasing the average distance between phospholipids. This allows one to draw mechanistic inferences about the binding interactions of lipases and phospholipases with their lipid sub-stratesb... [Pg.688]

PHOSPHOKETOLASE PHOSPHOLIPASE See specific enzyme MICELLE LIPASE... [Pg.771]

Cystic fibrosis can obstruct pancreatic ducts due to mucous plugging and impaired secretion of pancreatic enzymes such as lipase and phospholipases, which decreases hydrolysis and uptake oftri-acylglycerols. [Pg.104]

The eicosanoids, so called because of their derivation from a 20-carbon unsaturated fatty acid, arachidonic acid (eicosatetraenoic acid), are obtained from membrane phospholipids and synthesized de novo at the time of cellular stimulation. Arachidonic acid is cleaved from membrane-bound phosphatidylcholine by the enzyme phospholipase A2. Alternatively, arachidonic acid may be derived by the sequential actions of phospholipase C and diacylglyceryl lipase. Arachidonic acid can then follow either of two enzymatic pathways that result in the production of inflammatory mediators. The pathway initiated by cyclooxygenase (COX) produces prostaglandins the lipoxygenase pathway generates leukotrienes (Fig. 36.2). [Pg.425]

Natural fats and oils can be used directly in products, either individually or as mixtures. In many cases, however, it is necessary to modify their properties, particularly their melting characteristics, to make them suitable for particular applications. Therefore, the oils and fats industry has developed several modification processes using enzyme technology. In particular, lipases (and lately cutinases), phospholipases and pectinases can be used for interesterification processes, ester syntheses and in olive-oil extraction. [Pg.75]

The substrates of the MAP kinase pathway are very diverse and include both cytosolic and nuclear localized proteins. Phospholipase A2 and transcription factors of the Ets family are well characterized substrates of the ERK pathway. Phosphorylation of a Ser residue of phospholipase A2 by ERK proteins leads to activation of the lipase activity. Consequently, there is an increase in release of arachidonic acid and of lyso-phospholipids, which can act immediately as diffusible signal molecules or may represent first stages in the formation of second messenger molecules. [Pg.354]

Although many biochemical reactions take place in the bulk aqueous phase, there are several, catalyzed by hydroxynitrile lyases, where only the enzyme molecules close to the interface are involved in the reaction, unlike those enzyme molecules that remain idly suspended in the bulk aqueous phase [6, 50, 51]. This mechanism has no relation to the interfacial activation mechanism typical of lipases and phospholipases. Promoting biocatalysis in the interface may prove fruitful, particularly if substrates are dissolved in both aqueous phases, provided that interfacial stress is minimized. This approach was put into practice recently for the enzymatic epoxidation of styrene [52]. By binding the enzyme to the interface through conjugation of chloroperoxidase with polystyrene, a platform that protected the enzyme from interfacial stress and minimized product hydrolysis was obtained. It also allowed a significant increase in productivity, as compared to the use of free enzyme, and simultaneously allowed continuous feeding, which further enhanced productivity. [Pg.204]

For example, lysophosphatidylserine obtained through phospholipase D-mediated transphosphatidylation and phospholipase A or 5/1-1 positional specific lipase-mediated partial hydrolysis seemed to be the most effective chemical form in delivering DHA into brain. [Pg.32]


See other pages where Phospholipases/lipases is mentioned: [Pg.338]    [Pg.348]    [Pg.175]    [Pg.338]    [Pg.348]    [Pg.175]    [Pg.240]    [Pg.465]    [Pg.968]    [Pg.114]    [Pg.222]    [Pg.236]    [Pg.136]    [Pg.114]    [Pg.114]    [Pg.150]    [Pg.586]    [Pg.920]    [Pg.97]    [Pg.99]    [Pg.50]    [Pg.256]    [Pg.73]    [Pg.77]    [Pg.218]    [Pg.113]    [Pg.439]    [Pg.85]    [Pg.292]    [Pg.165]    [Pg.554]    [Pg.318]    [Pg.396]    [Pg.193]   
See also in sourсe #XX -- [ Pg.269 ]




SEARCH



Lipase phospholipase

Lipase phospholipase

Lipases, Esterases, and Phospholipases

Phospholipase

Phospholipases

Phospholipases phospholipase

© 2024 chempedia.info