Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transitional phenomena

Diastereoface selection has been investigated in the addition of enolates to a-alkoxy aldehydes (93). In the absence of chelation phenomena, transition states A and B (Scheme 19), with the OR substituent aligned perpendicular to the carbonyl a plane (Rl = OR), are considered (Oc-or c-r transition state R2 Nu steric parameters dictate that predoniinant diastereoface selection from A will occur. In the presence of strongly chelating metals, the cyclic transition states C and D can be invoked (85), and the same R2 Nu control element predicts the opposite diastereoface selection via transition state D (98). The aldol diastereoface selection that has been observed for aldehydes 111 and 112 with lithium enolates 99, 100, and 101 (eqs. [81-84]) (93) can generally be rationalized by a consideration of the Felkin transition states A and B (88) illustrated in Scheme 19, where A is preferred on steric grounds. [Pg.71]

In a study which has links with the order concepts in flow induced crystallization (see above), Hlavacek and co-workers have interpreted elastic melt flow instability as an order-disorder phenomenon. Transition occurs when tlie rate of order generation (negentropy production) imposed by the flow exceeds a... [Pg.343]

Polymers possess condensed state mainly referred to as crystalline state, and the crystalline spherulite form is shown in Figure 2.11. The condensed state can be divided into four phases, namely, no fixed shape, the transition state, liquid crystalline state, and crystalline state. Due to the complex formation process and peculiar phenomenon, transition state and liquid crystalline state have attracted much attention. The crystalline state is interesting mainly due to its multicrystalline form. [Pg.25]

Of course, condensed phases also exliibit interesting physical properties such as electronic, magnetic, and mechanical phenomena that are not observed in the gas or liquid phase. Conductivity issues are generally not studied in isolated molecular species, but are actively examined in solids. Recent work in solids has focused on dramatic conductivity changes in superconducting solids. Superconducting solids have resistivities that are identically zero below some transition temperature [1, 9, 10]. These systems caimot be characterized by interactions over a few atomic species. Rather, the phenomenon involves a collective mode characterized by a phase representative of the entire solid. [Pg.87]

The fiinction N (T) is sketched in fignre A2.2.7. At zero temperature all the Bose particles occupy the ground state. This phenomenon is called the Bose-Einstein condensation and is the temperature at which the transition to the condensation occurs. [Pg.435]

A related phenomenon with electric dipoles is ferroelectricity where there is long-range ordermg (nonzero values of the polarization P even at zero electric field E) below a second-order transition at a kind of critical temperature. [Pg.635]

Extended defects range from well characterized dislocations to grain boundaries, interfaces, stacking faults, etch pits, D-defects, misfit dislocations (common in epitaxial growth), blisters induced by H or He implantation etc. Microscopic studies of such defects are very difficult, and crystal growers use years of experience and trial-and-error teclmiques to avoid or control them. Some extended defects can change in unpredictable ways upon heat treatments. Others become gettering centres for transition metals, a phenomenon which can be desirable or not, but is always difficult to control. Extended defects are sometimes cleverly used. For example, the smart-cut process relies on the controlled implantation of H followed by heat treatments to create blisters. This allows a thin layer of clean material to be lifted from a bulk wafer [261. [Pg.2885]

For modelling conformational transitions and nonlinear dynamics of NA a phenomenological approach is often used. This allows one not just to describe a phenomenon but also to understand the relationships between the basic physical properties of the system. There is a general algorithm for modelling in the frame of the phenomenological approach determine the dominant motions of the system in the time interval of the process treated and theti write... [Pg.116]

A few studies have found potential surfaces with a stable minimum at the transition point, with two very small barriers then going toward the reactants and products. This phenomenon is referred to as Lake Eyring Henry Eyring, one of the inventors of transition state theory, suggested that such a situation, analogous to a lake in a mountain cleft, could occur. In a study by Schlegel and coworkers, it was determined that this energy minimum can occur as an artifact of the MP2 wave function. This was found to be a mathematical quirk of the MP2 wave function, and to a lesser extent MP3, that does not correspond to reality. The same effect was not observed for MP4 or any other levels of theory. [Pg.151]

The phenomenon under consideration is complicated and the theory developed in the last section is fairly simple-involved, but not really difficult. We have successfully discovered that the transition from Newtonian to pseudoplastic behavior is governed by the product 77, or the relative values of the shear rate and the rate of molecular response. [Pg.100]

Resonance Raman Spectroscopy. If the excitation wavelength is chosen to correspond to an absorption maximum of the species being studied, a 10 —10 enhancement of the Raman scatter of the chromophore is observed. This effect is called resonance enhancement or resonance Raman (RR) spectroscopy. There are several mechanisms to explain this phenomenon, the most common of which is Franck-Condon enhancement. In this case, a band intensity is enhanced if some component of the vibrational motion is along one of the directions in which the molecule expands in the electronic excited state. The intensity is roughly proportional to the distortion of the molecule along this axis. RR spectroscopy has been an important biochemical tool, and it may have industrial uses in some areas of pigment chemistry. Two biological appHcations include the deterrnination of helix transitions of deoxyribonucleic acid (DNA) (18), and the elucidation of several peptide stmctures (19). A review of topics in this area has been pubHshed (20). [Pg.210]

Complex Ion Formation. Phosphates form water-soluble complex ions with metallic cations, a phenomenon commonly called sequestration. In contrast to many complexing agents, polyphosphates are nonspecific and form soluble, charged complexes with virtually all metallic cations. Alkali metals are weakly complexed, but alkaline-earth and transition metals form more strongly associated complexes (eg, eq. 16). Quaternary ammonium ions are complexed Htde if at all because of their low charge density. The amount of metal ion that can be sequestered by polyphosphates generally increases... [Pg.339]

The iatroduction of a plasticizer, which is a molecule of lower molecular weight than the resia, has the abiUty to impart a greater free volume per volume of material because there is an iucrease iu the proportion of end groups and the plasticizer has a glass-transition temperature, T, lower than that of the resia itself A detailed mathematical treatment (2) of this phenomenon can be carried out to explain the success of some plasticizers and the failure of others. Clearly, the use of a given plasticizer iu a certain appHcation is a compromise between the above ideas and physical properties such as volatiUty, compatibihty, high and low temperature performance, viscosity, etc. This choice is appHcation dependent, ie, there is no ideal plasticizer for every appHcation. [Pg.124]

Crystallization. Raw natural mbber may freeze or crystallize during transit or prolonged storage, particularly at subzero temperatures. The mbber then becomes hard, inelastic, and usually much paler in color. This phenomenon is reversible and must be differentiated from storage hardening. The rate of crystallization is temperature-dependent and is most rapid at —26° C. Once at this temperature, natural mbber attains its maximum crystallinity within hours, and this maximum is no more than 30% of the total mbber. [Pg.268]

Glass-Transition Temperature. When a typical Hquid is cooled, its volume decreases slowly until the melting point, T, where the volume decreases abmpdy as the Hquid is transformed into a crystalline soHd. This phenomenon is illustrated by the line ABCD in Eigure 3. If a glass forming Hquid is cooled below (B in Eig. 3) without the occurrence of crystallization, it is considered to be a supercooled Hquid until the glass-transition temperature, T, is reached. At temperatures below T, the material is a soHd. [Pg.333]


See other pages where Transitional phenomena is mentioned: [Pg.12]    [Pg.155]    [Pg.281]    [Pg.328]    [Pg.480]    [Pg.28]    [Pg.731]    [Pg.830]    [Pg.842]    [Pg.846]    [Pg.1324]    [Pg.1500]    [Pg.1565]    [Pg.1960]    [Pg.103]    [Pg.251]    [Pg.261]    [Pg.93]    [Pg.197]    [Pg.1]    [Pg.450]    [Pg.221]    [Pg.283]    [Pg.371]    [Pg.50]    [Pg.255]    [Pg.321]    [Pg.544]    [Pg.287]    [Pg.431]    [Pg.167]    [Pg.167]    [Pg.213]    [Pg.10]    [Pg.283]    [Pg.483]    [Pg.31]   
See also in sourсe #XX -- [ Pg.102 ]




SEARCH



A New Phenomenon—Brittle to Ductile Transition

Chain Dimensions, Structures, and Transitional Phenomena

Glass transition phenomenon

Glass transition phenomenon theoretical approaches, comment

Glass transition temperature phenomena

Mode-Coupling Theory glass transition phenomenon

Molecular glasses glass transition phenomenon

Near-critical transition phenomenon

Order-disorder transitions phenomena

Phase transition phenomena in polymers

Phase transition phenomenon

Polyethylene transitional phenomena

Pre-transitional phenomena

Regime-transition phenomenon

Second-order phase transition phenomenon

Some Comments on Theoretical Approaches to the Glass Transition Phenomenon

Spin-crossover phenomenon transition temperatures

Supercooled liquids and glasses glass transition phenomenon

The Glass Transition Phenomenon

Transition from gaseous to coherent films condensation phenomena in two dimensions

Transition metals spin crossover phenomenon

Transition phenomena

Volume phase transition phenomena

© 2024 chempedia.info