Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenols with lead dioxide

Allgrl-substituted phenols are the most widespread inhibitors. The phenoxyl radicals corresponding to them are readily produced by oxidizing the phenols with lead dioxide [3], in photolysis, y and /3 radiolysis, as well as in their reaction with active radicals produced in the thermal or catalytic decomposition of organic peroxides and hydroperoxides [4]. The stability of the radicals formed is determined by the structure of the initial phenol. The most stable radicals are strongly shielded phenols. Thus, 2,4,6-tri-tert-butylphenol (I), when oxidized by Pb02, forms phenoxyl radicals, the EPR spectmm of which is presented in Fig. 34a, in almost 100% yield ... [Pg.42]

Various 2,6-di8ubstituted p-benzoquinones have been prepared by oxidation of the corresponding 2,6-disubstituted phenols with potassium nitrosodisulfonate or lead dioxide in formic acid. Oxidative coupling of 2,6-disubstituted phenols to poly-2,6-disubstituted phenylene ethers followed by treatment of the polymers in acetic acid with lead dioxide is reported to give low yields of the corresponding 2,6-disubstituted p-benzoquinones. [Pg.79]

The nitrosodisulfonate salts, particularly the dipotassium salt called Fremy s salt, are useful reagents for the selective oxidation of phenols and aromatic amines to quinones (the Teuber reaction). - Dipotassium nitrosodisulfonate has been prepared by the oxidation of a hydroxylaminedisulfonate salt with potassium permanganate, " with lead dioxide, or by electrolysis. This salt is also available commercially. The present procedure illustrates the electrolytic oxidation to form an alkaline aqueous solution of the relatively soluble disodium nitrosodisulfonate. This procedure avoids a preliminary filtration which is required to remove manganese dioxide formed when potassium permanganate is used as the oxidant. " ... [Pg.124]

Oxidation of phenols. Oxidation of phenols in apolar solvents with lead dioxide gives mainly polymeric ethers.1 However, oxidation in polar solvents (acetic acid and formic acid) yields diphenoquinones and p-benzoquinones almost exclusively.2... [Pg.87]

Biochemical Routes. Enzymatic oxidation of benzene or phenol leading to dilute solution of dihydroxybenzenes is known (62). Glucose can be converted into quinic acid [77-95-2] by fermentation. The quinic acid is subsequently oxidized to hydroquinone and -benzoquinone with manganese dioxide (63). [Pg.489]

Electro-oxidative polymerization of 2,6-disubstituted phenols is listed in Table I, with the polymerizations catalyzed by the copper-pyridine complex and oxidized by lead dioxide. 2,6-Dimethylphenol was electro-oxidatively polymerized to yield poly(2,6-dimethylphen-yleneoxide) with a molecular weight of 10000, as was attained by other polymerization methods. The NMR and IR spectra were in complete agreement with those measured for the other polymerization... [Pg.176]

The following questions on the electro-oxidative polymerization arose. First, why various phenol derivatives were smoothly polymerized which could not occur by the oxidation with the copper catalyst or lead dioxide. Secondly, why the activated phenol was reacted preferentially through C-0 coupling to form the poly(phenyleneoxide). The mechanism of the electro-oxidative polymerization is discussed below by using the example of 2,6-dimethylphenol. [Pg.178]

Oxidation peak potentials of phenol derivatives were measured with cyclic voltammetry 0.53, 0.47, 0.47, 0.28, and 0.77 V vs. Ag/ AgCl for phenol, 2,6-dimethyl-, 2,6-diphenyl-, 2,6-dimethoxy-, and 2,6-dichlorophenol respectively. The oxidation potential of phenol and 2,6-dichlorophenol are relatively high and this high potential is one of the reasons why phenol and dichlorophenol could not he polymerized by the oxidation with copper catalyst or lead dioxide. On the other hand, for the electro-oxidative polymerization the potential can he kept slightly higher than the oxidation potential of phenols and the polymerization proceeds. [Pg.182]

Other reported syntheses include the Reimer-Tiemann reaction, in which carbon tetrachloride is condensed with phenol in the presence of potassium hydroxide. A mixture of the ortho- and para-isomers is obtained the para-isomer predominates. -Hydroxybenzoic acid can be synthesized from phenol, carbon monoxide, and an alkali carbonate (52). It can also be obtained by heating alkali salts of -cresol at high temperatures (260—270°C) over metallic oxides, eg, lead dioxide, manganese dioxide, iron oxide, or copper oxide, or with mixed alkali and a copper catalyst (53). Heating potassium salicylate at 240°C for 1—1.5 h results in a 70—80% yield of -hydroxybenzoic acid (54). When the dipotassium salt of salicylic acid is heated in an atmosphere of carbon dioxide, an almost complete conversion to -hydroxybenzoic acid results. They>-aminobenzoic acid can be converted to the diazo acid with nitrous acid followed by hydrolysis. Finally, the sulfo- and halogenobenzoic acids can be fused with alkali. [Pg.292]

Numerous methods for the synthesis of salicyl alcohol exist. These involve the reduction of salicylaldehyde or of salicylic acid and its derivatives. The alcohol can be prepared in almost theoretical yield by the reduction of salicylaldehyde with sodium amalgam, sodium borohydride, or lithium aluminum hydride by catalytic hydrogenation over platinum black or Raney nickel or by hydrogenation over platinum and ferrous chloride in alcohol. The electrolytic reduction of salicylaldehyde in sodium bicarbonate solution at a mercury cathode with carbon dioxide passed into the mixture also yields saligenin. It is formed by the electrolytic reduction at lead electrodes of salicylic acids in aqueous alcoholic solution or sodium salicylate in the presence of boric acid and sodium sulfate. Salicylamide in aqueous alcohol solution acidified with acetic acid is reduced to salicyl alcohol by sodium amalgam in 63% yield. Salicyl alcohol forms along with -hydroxybenzyl alcohol by the action of formaldehyde on phenol in the presence of sodium hydroxide or calcium oxide. High yields of salicyl alcohol from phenol and formaldehyde in the presence of a molar equivalent of ether additives have been reported (60). Phenyl metaborate prepared from phenol and boric acid yields salicyl alcohol after treatment with formaldehyde and hydrolysis (61). [Pg.293]

The anodic oxidation of phenol (dissolved in sodium sulfate) was studied by De Sucre and Watkinson using two types of lead dioxide anodes [26]. The first was made of 2 mm lead shot that was oxidized for 12 h at 526mA/cm in 20% sulfuric acid while the second anode, electrodeposited lead dioxide flakes, was supplied by a commercial manufacturer. The phenol oxidized faster on the electrodeposited Pb02, which also turned out to be more corrosion-resistant than the oxidized lead shot. While all of the phenol oxidized rapidly (1.5 h) on the electrodeposited anode, not all of it formed CO2. It was found that 80% of the total organic carbon remained in solution after the phenol was completely oxidized. Phenol destruction increased with an increase in current density, and decreased as electrolyte flowrate, pH, and anode particle size were increased. [Pg.372]

The formation of the phenoxide anion enhances the reactivity of the ortho and para positions of the aromatic ring towards electrophilic reagents. The reaction of the phenoxide anion with carbon dioxide at 130 °C leads to ortho carboxylation (the Kolbe reactior. Thus phenol gives salicylic acid (4.4), the acetate of which is aspirin. The reaction is reversible and ortho phenolic acids undergo decarboxylation on heating. [Pg.127]

Acetic anhydride is produced by the direct oxidation of ethylene in the presence of air. The synthesis of salicylic acid involves the combination of several reactants. Sodium hydroxide (NaOH) reacts with phenol (CeHsOH) to give sodium phenolate and water. Sodium phenolate reacts with carbon dioxide (CO2) to obtain sodium salicylate. The subsequent acidification with H2SO4 leads to pure salicylic acid and sodium sulfate. [Pg.370]

Huysmans and Waters (1966) have combined heterogeneous oxidation with a flow technique by passing solutions of phenols in benzene through a bed of solid silver oxide or lead dioxide held in a tube in the cavity of the spectrometer. [Pg.71]

Coupling between aromatic amines and either phenols or other aromatic amino compounds is known and it is important in the production of azo polymers, and in the formation of azo dyes. Most of this work is outside the scope of this chapter a number of reviews are cited in ref. 20. One or two examples will suffice here to illustrate the area. Thus anthranilic acid (330) forms phenazine-l,6-dicaiboxylic acid (331) on treatment with manganese dioxide or lead dioxide in dry benzene or chloroform. The mechanistic details are obscure. Excellent yields could be obtained in intramolecular cases, e.g. amine (332)... [Pg.699]

Mixed carbonates Lead dioxide oxidizes A-hydroxycarbamates to nitroso-formates 0=N-C00R which react with alcohols and phenols to afford mixed carbonates. [Pg.210]


See other pages where Phenols with lead dioxide is mentioned: [Pg.106]    [Pg.81]    [Pg.81]    [Pg.158]    [Pg.856]    [Pg.386]    [Pg.328]    [Pg.292]    [Pg.293]    [Pg.283]    [Pg.49]    [Pg.235]    [Pg.328]    [Pg.81]    [Pg.213]    [Pg.334]    [Pg.72]    [Pg.197]    [Pg.18]    [Pg.689]    [Pg.690]    [Pg.1018]    [Pg.369]    [Pg.376]    [Pg.283]    [Pg.262]    [Pg.952]    [Pg.1007]    [Pg.1046]    [Pg.1047]    [Pg.226]    [Pg.1664]    [Pg.97]   
See also in sourсe #XX -- [ Pg.164 , Pg.165 , Pg.166 ]




SEARCH



Lead dioxide

With lead dioxide

© 2024 chempedia.info