Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenols pathways

Long, M. et al.. Metabolite profiling of carotenoid and phenolic pathways in mntant and transgenic lines of tomato identification of a high antioxidant fmit line. Phytochemistry, 67, 1750, 2006. [Pg.396]

Figure 1. Schematic outline of various products and associated enzymes from the shikimate and phenolic pathways in plants (and some microorganisms). Enzymes (1) 3-deoxy-2-oxo-D-arabino-heptulosate-7-phosphate synthase (2) 5-dehydroquinate synthase (3) shikimate dehydrogenase (4) shikimate kinase (5) 5-enol-pyruvylshikimate-3-phosphate synthase (6) chorismate synthase (7) chorismate mutase (8) prephenate dehydrogenase (9) tyrosine aminotransferase (10) prephenate dehydratase (11) phenylalanine aminotransferase (12) anthranilate synthase (13) tryptophan synthase (14) phenylalanine ammonia-lyase (15) tyrosine ammonia-lyase and (16) polyphenol oxidase. (From ACS Symposium Series No. 181, 1982) (62). Figure 1. Schematic outline of various products and associated enzymes from the shikimate and phenolic pathways in plants (and some microorganisms). Enzymes (1) 3-deoxy-2-oxo-D-arabino-heptulosate-7-phosphate synthase (2) 5-dehydroquinate synthase (3) shikimate dehydrogenase (4) shikimate kinase (5) 5-enol-pyruvylshikimate-3-phosphate synthase (6) chorismate synthase (7) chorismate mutase (8) prephenate dehydrogenase (9) tyrosine aminotransferase (10) prephenate dehydratase (11) phenylalanine aminotransferase (12) anthranilate synthase (13) tryptophan synthase (14) phenylalanine ammonia-lyase (15) tyrosine ammonia-lyase and (16) polyphenol oxidase. (From ACS Symposium Series No. 181, 1982) (62).
Liu RH, Liu J and Chen B. 2005. Apples prevent mammary tumors in rats. J Agric Food Chem 53 2341-2343. Long M, Millar DJ, Kimura Y, Donovan G, Rees J, Fraser PD, Bramley PM and Bolwell GP. 2006. Metabolite profiling of carotenoid and phenolic pathways in mutant and transgenic lines of tomato identification of a high antioxidant fruit line. Phytochemistry 67 1750-1757. [Pg.44]

In addition to the molecular techniques, technical advances both in chromatographic techniques and in identification tools, particularly the diverse forms of mass spectrometry, has allowed successful challenges to the separation and characterization of compounds of increasing complexity, poor stability, and low abundance [Whiting, 2001]. Information generated utilizing these techniques has resulted in characterization of a plethora of complex secondary metabolites that, in conjunction with the characterization of the enzymatic steps, has permitted the complete or partial elucidation of the flavonoid and the phenolic pathways present in many plants (Figs. 1.35 and 1.36). [Pg.31]

Matsuno M, Compagnon V, Schoch GA, Schmitt M, Debayle D, Bassard JE, Pollet B, Hehn A, Heintz D, Ullmann P, Lapierre C, Bernier F, Ehlting J, Werck-Reichhart D (2009) Evolution of a novel phenolic pathway for pollen development. Science 325 1688-1692... [Pg.442]

Phenolic compounds are commonplace natural products Figure 24 2 presents a sampling of some naturally occurring phenols Phenolic natural products can arise by a number of different biosynthetic pathways In animals aromatic rings are hydroxylated by way of arene oxide intermediates formed by the enzyme catalyzed reaction between an aromatic ring and molecular oxygen... [Pg.1001]

Phenol biosynthesis in plants proceeds from carbohydrate precursors whereas the pathway in animals involves oxidation of aromatic rings... [Pg.1017]

Fig. 1. Possible pathways and rate constants for the methylolation of phenol. Fig. 1. Possible pathways and rate constants for the methylolation of phenol.
Oxidative Reactions. The majority of pesticides, or pesticide products, are susceptible to some form of attack by oxidative enzymes. For more persistent pesticides, oxidation is frequently the primary mode of metaboHsm, although there are important exceptions, eg, DDT. For less persistent pesticides, oxidation may play a relatively minor role, or be the first reaction ia a metaboHc pathway. Oxidation generally results ia degradation of the parent molecule. However, attack by certain oxidative enzymes (phenol oxidases) can result ia the condensation or polymerization of the parent molecules this phenomenon is referred to as oxidative coupling (16). Examples of some important oxidative reactions are ether cleavage, alkyl-hydroxylation, aryl-hydroxylation, AJ-dealkylation, and sulfoxidation. [Pg.215]

Scheme 4b depicts condensation between a hydroxymethyl group and a phenolic ring where the hydroxybenzyl attacks at a ring position that is already hydroxymethylated. In this case, a methylene linkage is produced between the rings with concurrent loss of one mole each of formaldehyde and water. Both Jones and Grenier-Loustalot et al. demonstrated the occurrence of this reaction pathway beyond doubt under basic conditions. [Pg.907]

Direct hydroxylation of an aromatic ring to yield a hydroxybenzene (a phenol) is difficult and rarely done in the laboratory., but occurs much more frequently in biological pathways. An example is the hydroxylation of p-hydroxyphenyl acetate to give 3,4-dihydroxyphenyl acetate. The reaction is catalyzed by p-hydroxyphenylacctate-3-hydroxylase and requires molecular oxygen plus the coenzyme reduced flavin adenine dinucleotide, abbreviated FADH2. [Pg.553]

A plausible pathway is that the aromatisation of the cyclohexadienone 92 by a proton shift is accelerated in the presence of Ac20 under formation of acetate 93. The simultaneously generated acetic acid then cleaves the acetate to form the free phenol 94 (Scheme 44). This effect was observed for the first time during studies towards the total synthesis of the lipid-alternating and anti-atherosclerotic furochromone khellin 99 [64].The furanyl carbene chromium complex 96 was supposed to react with alkoxyalkyne 95 in a benzannulation reaction to give the densely substituted benzofuran derivative 97 (Scheme 45). Upon warming the reaction mixture in tetrahydrofuran to 65 °C the reaction was completed in 4 h, but only a dimerisation product could be isolated. This... [Pg.146]

Lim et al. also investigated HMTA-phenolic reactions with somewhat larger model compounds (e.g., two- and four-ring compounds) and established that similar reaction pathways to those described previously occurred.50 For these model compounds (as opposed to one-ring model compounds), which are more representative of typical oligomeric systems, increased molecular weight favored die formation of hydroxybenzylamines but not benzoxazines. This was suggested to be a steric effect. [Pg.398]

Figure 7.22 Reaction pathways for phenol-formaldehyde reactions under alkaline conditions. Figure 7.22 Reaction pathways for phenol-formaldehyde reactions under alkaline conditions.
As the reactions proceed, the disappearance of phenol is delayed due to competition for reaction with formaldehyde between phenol and the faster reacting hydroxymethyl-substituted phenols. Competition also exists between formaldehyde substitution reactions and condensation reactions between rings. Condensation reactions between two ortho-hydroxymethyl substituents are the least favorable condensation pathway. Depending on the reaction conditions, substitutions occur... [Pg.402]

Metabolic pathways containing dioxygenases in wild-type strains are usually related to detoxification processes upon conversion of aromatic xenobiotics to phenols and catechols, which are more readily excreted. Within such pathways, the intermediate chiral cis-diol is rearomatized by a dihydrodiol-dehydrogenase. While this mild route to catechols is also exploited synthetically [221], the chirality is lost. In the context of asymmetric synthesis, such further biotransformations have to be prevented, which was initially realized by using mutant strains deficient in enzymes responsible for the rearomatization. Today, several dioxygenases with complementary substrate profiles are available, as outlined in Table 9.6. Considering the delicate architecture of these enzyme complexes, recombinant whole-cell-mediated biotransformations are the only option for such conversions. E. coli is preferably used as host and fermentation protocols have been optimized [222,223]. [Pg.257]


See other pages where Phenols pathways is mentioned: [Pg.31]    [Pg.189]    [Pg.543]    [Pg.554]    [Pg.281]    [Pg.74]    [Pg.2880]    [Pg.31]    [Pg.189]    [Pg.543]    [Pg.554]    [Pg.281]    [Pg.74]    [Pg.2880]    [Pg.147]    [Pg.489]    [Pg.15]    [Pg.124]    [Pg.47]    [Pg.382]    [Pg.170]    [Pg.876]    [Pg.147]    [Pg.38]    [Pg.376]    [Pg.389]    [Pg.393]    [Pg.395]    [Pg.992]    [Pg.100]    [Pg.357]    [Pg.213]    [Pg.8]    [Pg.240]   
See also in sourсe #XX -- [ Pg.72 ]




SEARCH



Biosynthetic Pathways of Phenolics in Grapes

Phenol hydroxylation reaction pathway

Phenolic biosynthetic pathways

Phenolic synthesis pathways

Phenolics shikimate pathway

Phenols formation pathways

Plants, phenolic pathway

© 2024 chempedia.info