Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phase space periodic orbit

It is sometimes very usefiil to look at a trajectory such as the synnnetric or antisynnnetric stretch of figure Al.2.5 and figure A1.2.6 not in the physical spatial coordinates (r. . r y), but in the phase space of Hamiltonian mechanics [16, 29], which in addition to the coordinates (r. . r ) also has as additional coordinates the set of conjugate momenta. . pj. ). In phase space, a one-diniensional trajectory such as the aiitisymmetric stretch again appears as a one-diniensional curve, but now the curve closes on itself Such a trajectory is referred to in nonlinear dynamics as a periodic orbit [29]. One says that the aihiamionic nonnal modes of Moser and Weinstein are stable periodic orbits. [Pg.61]

The point q = p = 0 (or P = Q = 0) is a fixed point of the dynamics in the reactive mode. In the full-dimensional dynamics, it corresponds to all trajectories in which only the motion in the bath modes is excited. These trajectories are characterized by the property that they remain confined to the neighborhood of the saddle point for all time. They correspond to a bound state in the continuum, and thus to the transition state in the sense of Ref. 20. Because it is described by the two independent conditions q = 0 and p = 0, the set of all initial conditions that give rise to trajectories in the transition state forms a manifold of dimension 2/V — 2 in the full 2/V-dimensional phase space. It is called the central manifold of the saddle point. The central manifold is subdivided into level sets of the Hamiltonian in Eq. (5), each of which has dimension 2N — 1. These energy shells are normally hyperbolic invariant manifolds (NHIM) of the dynamical system [88]. Following Ref. 34, we use the term NHIM to refer to these objects. In the special case of the two-dimensional system, every NHIM has dimension one. It reduces to a periodic orbit and reproduces the well-known PODS [20-22]. [Pg.198]

VII. Phase-Space Analysis and Vibronic Periodic Orbits... [Pg.244]

Second, the mapping approach to nonadiabatic quantum dynamics is reviewed in Sections VI-VII. Based on an exact quantum-mechanical formulation, this approach allows us in several aspects to go beyond the scope of standard mixed quantum-classical methods. In particular, we study the classical phase space of a nonadiabatic system (including the discussion of vibronic periodic orbits) and the semiclassical description of nonadiabatic quantum mechanics via initial-value representations of the semiclassical propagator. The semiclassical spin-coherent state method and its close relation to the mapping approach is discussed in Section IX. Section X summarizes our results and concludes with some general remarks. [Pg.250]

VII. PHASE-SPACE ANALYSIS AND VIBRONIC PERIODIC ORBITS... [Pg.326]

Because the mapping approach treats electronic and nuclear dynamics on the same dynamical footing, its classical limit can be employed to study the phase-space properties of a nonadiabatic system. With this end in mind, we adopt a onemode two-state spin-boson system (Model IVa), which is mapped on a classical system with two degrees of freedom (DoF). Studying various Poincare surfaces of section, a detailed phase-space analysis of the problem is given, showing that the model exhibits mixed classical dynamics [123]. Furthermore, a number of periodic orbits (i.e., solutions of the classical equation of motion that return to their initial conditions) of the nonadiabatic system are identified and discussed [125]. It is shown that these vibronic periodic orbits can be used to analyze the nonadiabatic quantum dynamics [126]. Finally, a three-mode model of nonadiabatic photoisomerization (Model III) is employed to demonstrate the applicability of the concept of vibronic periodic orbits to multidimensional dynamics [127]. [Pg.326]

To perform a PO analysis of nonadiabatic quantum dynamics, we employ a quasi-classical approximation that expresses time-dependent quantities of a vibronically coupled system in terms of the vibronic POs of the system [123]. Considering the quasi-classical expression (16) for the time-dependent expectation value of an observable A, this approximation assumes that the integrable islands in phase space represent the most significant contributions to the dynamics of the observables considered [236]. As a consequence, the short-time dynamics of the system is determined by its shortest POs and can be approximated by a time average over these orbits. Denoting the A th PO with period 7 by qk t),Pk t) we obtain [123]... [Pg.332]

Although the phase space of the nonadiabatic photoisomerization system is largely irregular, Fig. 36A demonstrates that the time evolution of a long trajectory can be characterized by a sequence of a few types of quasi-periodic orbits. The term quasi-periodic refers here to orbits that are close to an unstable periodic orbit and are, over a certain timescale, exactly periodic in the slow torsional mode and approximately periodic in the high-frequency vibrational and electronic degrees of freedom. In Fig. 36B, these orbits are schematically drawn as lines in the adiabatic potential-energy curves Wo and Wi. The first class of quasi-periodic orbits we wish to consider are orbits that predominantly... [Pg.337]

Now, the eigenenergies of the Hamiltonian can be detected directly if the time dependence of the above average exhibits quantum beats. This will be the case if the spectrum is not too dense and the linewidths are smaller than the level spacings. From a Fourier transform of the autocorrelation function, we then obtain an expression of the form (2.26)-(2.27), which can be evaluated semiclassically in terms of periodic orbits and their quantum phases. [Pg.512]

In the analysis of the periodic orbits, it is convenient to first study the edge periodic orbits of relevant 1F, 2F, or 3F subsystems rather than to start with the bulk periodic orbits for which all the F = 4 degrees of freedom are active. The amplitudes of the edge orbits are significantly smaller than those of the bulk periodic orbits, as explained in Section II. Nevertheless, they help to localize the bulk periodic orbits because the edge periodic orbits form a skeleton for the bulk phase-space dynamics in integrable systems. [Pg.527]

This study [14] has shown that a period-doubling bifurcation associated with the Fermi resonance occurs in this subsystem at the energy E = 3061.3 cm-1 (with Egp = 0). Below the Fermi bifurcation, there exist edge periodic orbits of normal type, which are labeled by ( i, 22 -)normai- At the Fermi bifurcation, a new periodic orbit of type (2,1°, ->Fermi appears by period doubling around a period of 2T = 100 fs. This orbit is surrounded by an elliptic island that forms a region of local modes in phase space. Therefore, another family of edge periodic orbits of local type are bom after the Fermi bifurcation that may be labeled by the integers (n n , -)iocai- They are distinct... [Pg.527]

In tetra-atomic molecules that are linear, the number of degrees of freedom is F =7, which again considerably complicates the analysis. Nevertheless, the dynamics of such systems can turn out to be tractable if the anharmonicities may be considered as perturbations with respect to the harmonic zero-order Hamiltonian. In such cases, the regular classical motions remain dominant in phase space as compared with the chaotic zones, and the edge periodic orbits of subsystems again form a skeleton for the bulk periodic orbits. [Pg.529]

Figure 9. Supercritical antipitchfork bifurcation scenario for symmetric XYX molecules on the left, bifurcation diagram in the plane of energy versus position in the center, typical phase portraits in some Poincare section in the different regimes on the right, the fundamental periodic orbits in position space. Figure 9. Supercritical antipitchfork bifurcation scenario for symmetric XYX molecules on the left, bifurcation diagram in the plane of energy versus position in the center, typical phase portraits in some Poincare section in the different regimes on the right, the fundamental periodic orbits in position space.
In the Smale horseshoe and its variants, the repeller is composed of an infinite set of periodic and nonperiodic orbits indefinitely trapped in the region defining the transition complex. All the orbits are unstable of saddle type. The repeller occupies a vanishing volume in phase space and is typically a fractal object. Its construction is based on strict topological rules. All the periodic and nonperiodic orbits turn out to be topological combinations of a finite number of periodic orbits called the fundamental periodic orbits. Symbols are assigned to these fundamental periodic orbits that form an alphabet... [Pg.552]

The procedure is demonstrated by a system with one degree of freedom, assumed to be conservative, with Hamiltonian H(q,p) = a. Solving for the momentum, the relation p = p(q, a.i) defines the equation of the orbit traced out by the system point in two-dimensional phase space for constant H = a.. The graphical details for two types of periodic motion are shown in the diagram. [Pg.81]

In analogy with the one-dimensional analysis, the Jj are defined over complete periods of the orbit in the (qj,Pj) plane, Jj = ptdq j. If one of the separation coordinates is cyclic, its conjugate momentum is constant. The corresponding orbit in the (qj,Pj) plane of phase space is a horizontal straight line, which may be considered as the limiting case of rotational periodicity, for which the cyclic qj always has a natural period of 2-k, and Jj = 2irpj for all cyclic variables. [Pg.84]

The Lotka-Volterra type of equations provides a model for sustained oscillations in chemical systems with an overall affinity approaching infinity. Perturbations at finite distances from the steady state are also periodic in time. Within the phase space (Xvs. Y), the system produces an infinite number of continuous closed orbits surrounding the steady state... [Pg.656]

Similar to unstable periodic orbits, an NHIM has stable and unstable manifolds that are of dimension 2 — 2 and are also structurally stable. Note that a union of the segments of the stable and unstable manifolds is also of dimension 2n — 2, which is only of dimension one less than the energy surface. Hence, as far as dimensionality is concerned, it is possible for a combination of the stable and unstable manifolds of an NHIM to divide the many-dimensional energy surface so that reaction flux can be dehned. However, unlike the fewdimensional case in which a union of the stable and unstable manifolds necessarily encloses a phase space region, a combination of the stable and unstable manifolds of an NHIM may not do so in a many-dimensional system. This phenomenon is called homoclinic tangency, and it is extensively discussed in a recent review article by Toda [17]. [Pg.21]

A beautiful classical theory of unimolecular isomerization called the reactive island theory (RIT) has been developed by DeLeon and Marston [23] and by DeLeon and co-workers [24,25]. In RIT the classical phase-space structures are analyzed in great detail. Indeed, the key observation in RIT is that different cylindrical manifolds in phase space can act as mediators of unimolecular conformational isomerization. Figure 23 illustrates homoclinic tangling of motion near an unstable periodic orbit in a system of two DOFs with a fixed point T, and it applies to a wide class of isomerization reaction with two stable isomer... [Pg.75]


See other pages where Phase space periodic orbit is mentioned: [Pg.133]    [Pg.61]    [Pg.194]    [Pg.195]    [Pg.196]    [Pg.232]    [Pg.49]    [Pg.41]    [Pg.140]    [Pg.141]    [Pg.143]    [Pg.144]    [Pg.248]    [Pg.329]    [Pg.337]    [Pg.340]    [Pg.161]    [Pg.356]    [Pg.498]    [Pg.499]    [Pg.555]    [Pg.557]    [Pg.563]    [Pg.568]    [Pg.574]    [Pg.126]    [Pg.84]    [Pg.118]    [Pg.27]    [Pg.154]   
See also in sourсe #XX -- [ Pg.722 , Pg.723 ]




SEARCH



Orbit space

Orbital period

Orbital space

Orbitals phase

Orbitals phasing

Period-4 orbit

Periodic orbits

Phase orbit

Phase space

© 2024 chempedia.info