Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phase Separation Modes

Tesarova and Bosakova [58] proposed an HPLC method for the enantio-selective separation of some phenothiazine and benzodiazepine derivatives on six different chiral stationary phases (CSPs). These selected CSPs, with respect to the structure of the separated compounds, were either based on b-CD chiral selectors (underivatized (J>-CD and hydroxypropyl ether (3-CD) or on macrocyclic antibiotics (vancomycin, teicoplanin, teicoplanin aglycon and ristocetin A). Measurements were carried out in a reversed-phase separation mode. The influence of mobile phase composition on retention and enantio-selective separation was studied. Enantioselective separation of phenothiazine derivatives, including levopromazine (LPZ), promethazine and thioridazine, was relatively difficult to achieve, but it was at least partly successful with both types of CSPs used in this work (CD-based and glycopeptide-based CSP), except for levomepromazine for which only the [CCD-based CSP was suitable. [Pg.171]

A computer-assisted system for predicting retention of aromatic compounds has been investigated in reversed-phase liquid chromatography. The basic retention descriptions have been derived from the studies on quantitative structure-retention relationships. The system was constructed on a 16-bit microcomputer and then evaluated by comparing the retention data between measured and predicted values. The excellent agreement between both values were observed on an octadecyl-silioa stationsu y phase with acetonitrile and methanol aqueous mobile phase systems. This system has been modified to give us the information for optimal separation conditions in reversed-phase separation mode. The approach could also work well for any other reveraed— phase stationsury phases such as octyl, phenyl and ethyl silicas. [Pg.167]

Combining different separation techniques governed by different mechanisms to a multidimensional method is suitable to increase the potential of the individual techniques by an order of magnitude (31,32). HPLC is one of the most powerful separation techniques available today for nonvolatile substances. For reasons mentioned above, HPLC most often employs the reverse phase separation mode. On-line coupling of HPLC with AMD using normal phase chromatography results in separation numbers around 500. [Pg.146]

In the viscoelastic model, the phase-separation mode can be switched between the fluid mode and elastic gel mode . The dynamic process of viscoelastic phase separation is schematically drawn in Fig. 1. It is characterized by the switching of phase-separation modes between fluidlike and elastic gel-like ones [4]. This switching is likely caused by the change in the coupling between stress fields and velocity fields, which is described by Eq. (6) According to Eq. (6), the two extreme cases, namely, (i) fluid model (xfj const.) and (ii) elastic gel model (G(t), K t) const.), correspond to and t[Pg.180]

Although in principle the microscopic Hamiltonian contains the infonnation necessary to describe the phase separation kinetics, in practice the large number of degrees of freedom in the system makes it necessary to construct a reduced description. Generally, a subset of slowly varying macrovariables, such as the hydrodynamic modes, is a usefiil starting point. The equation of motion of the macrovariables can, in principle, be derived from the microscopic... [Pg.735]

Figure 16.3.2. Possible failure mode for a phase separation vessel. Figure 16.3.2. Possible failure mode for a phase separation vessel.
A more complicated, but flexible, system has been reported by Blomberg et al. (46). Here, size exclusion chromatography (SEC), normal phase EC (NPLC) and GC were coupled for the characterization of restricted (according to size) and selected (according to polarity) fractions of long residues. The seemingly incompatible separation modes, i.e. SEC and NPLC, are coupled by using an on-line solvent-evaporation step. [Pg.402]

Other modes of LC operation include liquid-liquid partition chromatography (LLC) and bonded phase chromatography. In the former, a stationary liquid phase which is immiscible with the mobile phase is coated on a porous support, with separation based on partition equilibrium differences of components between the two liquid phases. This mode offers an alternative to ion exchange in the fractionation of polar, water soluble substances. While quite useful, the danger exists in LLC that the stationary phase can be stripped from the column, if proper precautions are not taken. Hence, it is typical to pre-equil-ibrate carefully the mobile and stationary phases and to use a forecolimn, heavily loaded with stationary phase 9). [Pg.227]

Reverse phase chromatography is finding increasing use in modern LC. For example, steroids (42) and fat soluble vitamins (43) are appropriately separated by this mode. Reverse phase with a chemically bonded stationary phase is popular because mobile phase conditions can be quickly found which produce reasonable retention. (In reverse phase LC the mobile phase is typically a water-organic solvent mixture.) Rapid solvent changeover also allows easy operation in gradient elution. Many examples of reverse phase separations can be found in the literature of the various instrument companies. [Pg.240]

If simple sample pretreatment procedures are insufficient to simplify the complex matrix often observed in process mixtures, multidimensional chromatography may be required. Manual fraction collection from one separation mode and re-injection into a second mode are impractical, so automatic collection and reinjection techniques are preferred. For example, a programmed temperature vaporizer has been used to transfer fractions of sterols such as cholesterol and stigmasterol from a reversed phase HPLC system to a gas chromatographic system.11 Interfacing gel permeation HPLC and supercritical fluid chromatography is useful for nonvolatile or thermally unstable analytes and was demonstrated to be extremely useful for separation of compounds such as pentaerythritol tetrastearate and a C36 hydrocarbon standard.12... [Pg.91]

Prevailing separation mode Normal-phase Reversed-phase... [Pg.218]

Liquid chromatography has a number of different configurations with regard to technical (instrumental) as well as separation modes. The HPLC system can be operated in either isocratic mode, i.e. the same mobile phase composition throughout the chromatographic ran, or by gradient elution (GE), i.e. the mobile phase composition varies with run time. The choice of operation... [Pg.233]

Table 7.89 lists the main characteristics of MDHPLC (see also Table 7.86). In MDHPLC the mobile-phase polarity can be adjusted in order to obtain adequate resolution, and a wide range of selectivity differences can be employed when using the various available separation modes [906]. Some LC modes have incompatible mobile phases, e.g. normal-phase and ion-exchange separations. Potential problems arise with liquid-phase immiscibility precipitation of buffer salts and incompatibilities between the mobile phase from one column and the stationary phase of another (e.g. swelling of some polymeric stationary-phase supports by changes in solvents or deactivation of silica by small amounts of water). Table 7.89 lists the main characteristics of MDHPLC (see also Table 7.86). In MDHPLC the mobile-phase polarity can be adjusted in order to obtain adequate resolution, and a wide range of selectivity differences can be employed when using the various available separation modes [906]. Some LC modes have incompatible mobile phases, e.g. normal-phase and ion-exchange separations. Potential problems arise with liquid-phase immiscibility precipitation of buffer salts and incompatibilities between the mobile phase from one column and the stationary phase of another (e.g. swelling of some polymeric stationary-phase supports by changes in solvents or deactivation of silica by small amounts of water).

See other pages where Phase Separation Modes is mentioned: [Pg.209]    [Pg.203]    [Pg.5]    [Pg.261]    [Pg.284]    [Pg.713]    [Pg.43]    [Pg.293]    [Pg.67]    [Pg.550]    [Pg.209]    [Pg.203]    [Pg.5]    [Pg.261]    [Pg.284]    [Pg.713]    [Pg.43]    [Pg.293]    [Pg.67]    [Pg.550]    [Pg.1313]    [Pg.390]    [Pg.219]    [Pg.5]    [Pg.6]    [Pg.117]    [Pg.147]    [Pg.152]    [Pg.83]    [Pg.206]    [Pg.335]    [Pg.156]    [Pg.29]    [Pg.811]    [Pg.184]    [Pg.43]    [Pg.161]    [Pg.161]    [Pg.201]    [Pg.173]    [Pg.234]    [Pg.234]    [Pg.546]    [Pg.551]    [Pg.38]    [Pg.97]   


SEARCH



Separable modes

Separation modes

© 2024 chempedia.info