Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Persulfate formation

The argument is not convincing, however, because higher efficiencies of persulfate formation can be obtained in ammonium sulfate solution than either in one of sulfuric acid alone or in a mixture of these two substances. The data in Table LXXXIX are of interest in this connection they... [Pg.515]

EFFICIENCY OF PERSULFATE FORMATION IN MIXTURES OF AMMONIUM SULFATE AND SULFURIC ACID... [Pg.515]

The tri/luorovinyloxy group is cleaved by potassium persulfate [37J The pnmanly formed dihydroxy compound undergoes spontaneous hydrolysis with the formation of carboxylic acid (equation 29)... [Pg.331]

Initiation Mechanism of Persulfate-Amine N-methylmorpholine [46], which involves the formation ... [Pg.234]

The ethylenediamine derivative [31] possesses higher promoting activities than other diamines. This phenomenon may be ascribed to the copromoting effect of the two amino groups on the decomposition of persulfate through a CCT (contact charge transfer complex) formation. So we proposed the initiation mechanism via CCT as the intimate ion pair and deprotonation via CTS (cyclic transition state) as follows ... [Pg.235]

Emulsion polymerizations most often involve the use of water-soluble initiators (e.g. persulfate see 33.2.6.1) and polymer chains are initiated in the aqueous phase. A number of mechanisms for particle formation and entry have been described, however, a full discussion of these is beyond the scope of this book. Readers are referred to recent texts on emulsion polymerization by Gilbert4 and Lovell and El-Aasser43 for a more comprehensive treatment. [Pg.63]

Photolysis or thermolysis of persulfate ion (41) (also called peroxydisulfate) results in hoinolysis of the 0-0 bond and formation of two sulfate radical anions. The thermal reaction in aqueous media has been widely studied."51 232 The rate of decomposition is a complex function of pH, ionic strength, and concentration. Initiator efficiencies for persulfate in emulsion polymerization are low (0.1-0.3) and depend upon reaction conditions (Le. temperature, initiator concentration)."33... [Pg.94]

A number of mechanisms for thermal decomposition of persulfate in neutral aqueous solution have been proposed.232 They include unimolccular decomposition (Scheme 3.40) and various bimolecular pathways for the disappearance of persulfate involving a water molecule and concomitant formation of hydroxy radicals (Scheme 3.41). The formation of polymers with negligible hydroxy end groups is evidence that the unimolecular process dominates in neutral solution. Heterolytic pathways for persulfate decomposition can he important in acidic media. [Pg.94]

Various initiation strategies and surfactant/cosurfactant systems have been used. Early work involved in situ alkoxyamine formation with either oil soluble (BPO) or water soluble initiators (persulfate) and traditional surfactant and hydrophobic cosurfactants. Later work established that preformed polymer could perform the role of the cosurfactant and surfactant-free systems with persulfate initiation were also developed, l90 222,2i3 Oil soluble (PS capped with TEMPO,221 111,224 PBA capped with 89) and water soluble alkoxyamines (110, sodium salt""4) have also been used as initiators. Addition of ascorbic acid, which reduces the nitroxide which exits the particles to the corresponding hydroxylamine, gave enhanced rates and improved conversions in miniemulsion polymerization with TEMPO.225 Ascorbic acid is localized in the aqueous phase by solubility. [Pg.482]

As an even more explicit example of this effect Figure 6 shows that EPM is able to reproduce fairly well the experimentally observed dependence of the particle number on surfactant concentration for a different monomer, namely methyl methacrylate (MMA). The polymerization was carried at 80°C at a fixed concentration of ammonium persulfate initiator (0.00635 mol dm 3). Because methyl methacrylate is much more water soluble than styrene, the drop off in particle number is not as steep around the critical micelle concentration (22.) In this instance the experimental data do show a leveling off of the particle number at high and low surfactant concentrations as expected from the theory of particle formation by coagulative nucleation of precursor particles formed by homogeneous nucleation, which has been incorporated into EPM. [Pg.375]

Figure 28.21 The reactions of R u (11) pby 3 + are catalyzed by light at 452 nm that begins by forming an excited state intermediate. In the presence of persulfate, a sulfate radical is formed concomitant with the oxidative product Ru(III)bpy33+. This form of the chelate is able to catalyze the formation of a radical on a tyrosine phenolic ring that can react along with the sulfate radical either with a nucleophile, such as a cysteine thiol, or with another tyrosine side chain to form a covalent linkage. The result of this reaction cascade is to cause protein crosslinks to form when a sample containing these components is irradiated with light. Figure 28.21 The reactions of R u (11) pby 3 + are catalyzed by light at 452 nm that begins by forming an excited state intermediate. In the presence of persulfate, a sulfate radical is formed concomitant with the oxidative product Ru(III)bpy33+. This form of the chelate is able to catalyze the formation of a radical on a tyrosine phenolic ring that can react along with the sulfate radical either with a nucleophile, such as a cysteine thiol, or with another tyrosine side chain to form a covalent linkage. The result of this reaction cascade is to cause protein crosslinks to form when a sample containing these components is irradiated with light.
Figure 8.2 Polyacrylamide gel formation and hydrolysis of acrylamide to acrylate. (A) Acrylamide and A,A-methylenebisacrylamide (bis) are copolymerized in a reaction catalyzed by ammonium persulfate [(NH4)2S208] and TEMED. (B) A very short stretch of cross-linked polyacrylamide is represented. Cross-linking between similar structures leads to the formation of ropelike bundles of polyacrylamide that are themselves cross-linked together forming the gel matrix. In the lower portion of (B) is shown how pendant, neutral carboxamide groups can become hydrolyzed to charged carboxyls. Figure 8.2 Polyacrylamide gel formation and hydrolysis of acrylamide to acrylate. (A) Acrylamide and A,A-methylenebisacrylamide (bis) are copolymerized in a reaction catalyzed by ammonium persulfate [(NH4)2S208] and TEMED. (B) A very short stretch of cross-linked polyacrylamide is represented. Cross-linking between similar structures leads to the formation of ropelike bundles of polyacrylamide that are themselves cross-linked together forming the gel matrix. In the lower portion of (B) is shown how pendant, neutral carboxamide groups can become hydrolyzed to charged carboxyls.
Polymerization of butyl acrylate was also studied by us in ethyl acetate/water two phase systems (3) using potassium persulfate/quaternary ammonium salts as the initiator system. Under these conditions (a minimum amount of water was used to dissolve the persulfate), it was found that symmetrical quat salts were more efficient than surfactant type quat salts. Also, the more lipophilic quat salts were more efficient. These results prompted us to propose formation of an organic-soluble quaternary ammonium persulfate via typical phase transfer processes. [Pg.118]

Park et al. (2005) proposed another, pure-chemical and handy, method of the COj" generation comprising treatment of the sodium formate and persulfate mixture in DMF at 50°C ... [Pg.59]

In aqneous tert-butanol, pulse radiolysis of potassium persulfate and p-nitrobenzaldehyde induced consecutive reactions with the eventual formation of the p-formylphenoxyl radical (Geeta et al. [Pg.63]

Marchand and co-workers reported a synthetic route to TNAZ (18) involving a novel electrophilic addition of NO+ NO2 across the highly strained C(3)-N bond of 3-(bromomethyl)-l-azabicyclo[1.1.0]butane (21), the latter prepared as a nonisolatable intermediate from the reaction of the bromide salt of tris(bromomethyl)methylamine (20) with aqueous sodium hydroxide under reduced pressure. The product of this reaction, A-nitroso-3-bromomethyl-3-nitroazetidine (22), is formed in 10% yield but is also accompanied by A-nitroso-3-bromomethyl-3-hydroxyazetidine as a by-product. Isolation of (22) from this mixture, followed by treatment with a solution of nitric acid in trifluoroacetic anhydride, leads to nitrolysis of the ferf-butyl group and yields (23). Treatment of (23) with sodium bicarbonate and sodium iodide in DMSO leads to hydrolysis of the bromomethyl group and the formation of (24). The synthesis of TNAZ (18) is completed by deformylation of (24), followed by oxidative nitration, both processes achieved in one pot with an alkaline solution of sodium nitrite, potassium ferricyanide and sodium persulfate. This route to TNAZ gives a low overall yield and is not suitable for large scale manufacture. [Pg.266]

An interesting aspect of fluoride applications in electrochemistry is the beneficial effect that fluoride-containing electrolyte media have on the anodic formation of ozone. Oxidized forms of fluoride are known to result in the formation of persulfate and peroxide, but for the... [Pg.280]


See other pages where Persulfate formation is mentioned: [Pg.515]    [Pg.516]    [Pg.515]    [Pg.516]    [Pg.228]    [Pg.186]    [Pg.22]    [Pg.67]    [Pg.170]    [Pg.101]    [Pg.129]    [Pg.609]    [Pg.258]    [Pg.367]    [Pg.212]    [Pg.12]    [Pg.42]    [Pg.261]    [Pg.99]    [Pg.219]    [Pg.290]    [Pg.195]    [Pg.1037]    [Pg.500]    [Pg.133]    [Pg.66]    [Pg.240]    [Pg.266]    [Pg.268]    [Pg.578]    [Pg.904]    [Pg.964]    [Pg.399]    [Pg.134]   
See also in sourсe #XX -- [ Pg.515 ]




SEARCH



Persulfate

Persulfates

© 2024 chempedia.info