Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Peroxidation of olefins

A. Peroxidation of Olefins to Give Oxiranes (Epoxides) 5-5. Preparation of 1-Hexene Oxide 5-6. Preparation of Isophorone Oxide... [Pg.34]

Oxides are usually formed in the laboratory by the peroxidation of olefins with H Oj, peracids, or by the dehydrohalogenation of halohydrins. [Pg.36]

Ozonation ofAlkenes. The most common ozone reaction involves the cleavage of olefinic carbon—carbon double bonds. Electrophilic attack by ozone on carbon—carbon double bonds is concerted and stereospecific (54). The modified three-step Criegee mechanism involves a 1,3-dipolar cycloaddition of ozone to an olefinic double bond via a transitory TT-complex (3) to form an initial unstable ozonide, a 1,2,3-trioxolane or molozonide (4), where R is hydrogen or alkyl. The molozonide rearranges via a 1,3-cycloreversion to a carbonyl fragment (5) and a peroxidic dipolar ion or zwitterion (6). [Pg.493]

Arsenic Peroxides. Arsenic peroxides have not been isolated however, elemental arsenic, and a great variety of arsenic compounds, have been found to be effective catalysts ia the epoxidation of olefins by aqueous hydrogen peroxide. Transient peroxoarsenic compounds are beheved to be iavolved ia these systems. Compounds that act as effective epoxidation catalysts iaclude arsenic trioxide, arsenic pentoxide, arsenious acid, arsenic acid, arsenic trichloride, arsenic oxychloride, triphenyl arsiae, phenylarsonic acid, and the arsenates of sodium, ammonium, and bismuth (56). To avoid having to dispose of the toxic residues of these reactions, the arsenic can be immobi1i2ed on a polystyrene resia (57). [Pg.94]

By-products include ozonides (17). Other peroxidic products including polymeric peroxides and polymeric ozonides can form, depending on reaction conditions, solvent, and olefin used. A variety of cycHc diperoxides (4) have been obtained by ozonolysis of olefins. Both cis- and... [Pg.117]

This ladical-geneiating reaction has been used in synthetic apphcations, eg, aioyloxylation of olefins and aromatics, oxidation of alcohols to aldehydes, etc (52,187). Only alkyl radicals, R-, are produced from aliphatic diacyl peroxides, since decarboxylation occurs during or very shortiy after oxygen—oxygen bond scission in the transition state (187,188,199). For example, diacetyl peroxide is well known as a source of methyl radicals (206). [Pg.124]

Polymerization of olefins such as styrene is promoted by acid or base or sodium catalysts, and polyethylene is made with homogeneous peroxides. Condensation polymerization is catalyzed by acid-type catalysts such as metal oxides and sulfonic acids. Addition polymerization is used mainly for olefins, diolefins, and some carbonyl compounds. For these processes, initiators are coordination compounds such as Ziegler-type catalysts, of which halides of transition metals Ti, V, Mo, and W are important examples. [Pg.2095]

The introduction of chlorinated porphyrins (10) allowed for hydrogen peroxide to be used as terminal oxidant [62], These catalysts, discovered by Mansuy and coworkers, were demonstrated to resist decomposition, and efficient epoxidations of olefins were achieved when they were used together with imidazole or imidazo-lium carboxylates as additives, (Table 6.6, Entries 1 and 2). [Pg.201]

Asymmetric epoxidation of olefins with ruthenium catalysts based either on chiral porphyrins or on pyridine-2,6-bisoxazoline (pybox) ligands has been reported (Scheme 6.21). Berkessel et al. reported that catalysts 27 and 28 were efficient catalysts for the enantioselective epoxidation of aryl-substituted olefins (Table 6.10) [139]. Enantioselectivities of up to 83% were obtained in the epoxidation of 1,2-dihydronaphthalene with catalyst 28 and 2,6-DCPNO. Simple olefins such as oct-l-ene reacted poorly and gave epoxides with low enantioselectivity. The use of pybox ligands in ruthenium-catalyzed asymmetric epoxidations was first reported by Nishiyama et al., who used catalyst 30 in combination with iodosyl benzene, bisacetoxyiodo benzene [PhI(OAc)2], or TBHP for the oxidation of trons-stilbene [140], In their best result, with PhI(OAc)2 as oxidant, they obtained trons-stilbene oxide in 80% yield and with 63% ee. More recently, Beller and coworkers have reexamined this catalytic system, finding that asymmetric epoxidations could be perfonned with ruthenium catalysts 29 and 30 and 30% aqueous hydrogen peroxide (Table 6.11) [141]. Development of the pybox ligand provided ruthenium complex 31, which turned out to be the most efficient catalyst for asymmetric... [Pg.222]

In conclusion, the above summary of oxidation methods shows that there is still room for further improvements in the field of selective olefin epoxidation. The development of active and selective catalysts capable of oxidizing a broad range of olefin substrates with aqueous hydrogen peroxide as terminal oxidant in inexpensive and environmentally benign solvents remains a continuing challenge. [Pg.225]

Table 12.2 Epoxidation of olefins with bis(trimethylsilyl) peroxide (BTSP) catalyzed by high-valent oxorhenium deri-vatives> bl... Table 12.2 Epoxidation of olefins with bis(trimethylsilyl) peroxide (BTSP) catalyzed by high-valent oxorhenium deri-vatives> bl...
Primary radicals are unstable, lowest members such as dimet peroxide are shock sens and dangerous expls sensitivity lessens with increasing mw polymeric peroxides (copolymers of olefins and 02) explode on heating... [Pg.679]

Micellar catalysis to enhance or diminish the rate of chemical reactions is well known [97]. Of somewhat greater interest is the influence of micelles on competing reactions, e.g., proton-catalyzed reactions. An example related to the effect of alkanesulfonates is the epoxidation of simple aliphatic olefins. The reaction of olefins and hydrogen peroxide catalyzed by strongly acidic Mo(VI)... [Pg.207]

Rather low yields were obtained by reaction of olefins with phosphorous acid in the presence of free radical catalysts. The reactants were dissolved in 50% aqueous dioxane, dibenzoyl peroxide was added, and the solution was heated for 6 h at 90°C [93,94] see Eq. (66) ... [Pg.575]

Although the actual reaction mechanism of hydrosilation is not very clear, it is very well established that the important variables include the catalyst type and concentration, structure of the olefinic compound, reaction temperature and the solvent. used 1,4, J). Chloroplatinic acid (H2PtCl6 6 H20) is the most frequently used catalyst, usually in the form of a solution in isopropyl alcohol mixed with a polar solvent, such as diglyme or tetrahydrofuran S2). Other catalysts include rhodium, palladium, ruthenium, nickel and cobalt complexes as well as various organic peroxides, UV and y radiation. The efficiency of the catalyst used usually depends on many factors, including ligands on the platinum, the type and nature of the silane (or siloxane) and the olefinic compound used. For example in the chloroplatinic acid catalyzed hydrosilation of olefinic compounds, the reactivity is often observed to be proportional to the electron density on the alkene. Steric hindrance usually decreases the rate of... [Pg.14]

In addition, also nonheme iron catalysts containing BPMEN 1 and TPA 2 as ligands are known to activate hydrogen peroxide for the epoxidation of olefins (Scheme 1) [20-26]. More recently, especially Que and coworkers were able to improve the catalyst productivity to nearly quantitative conversion of the alkene by using an acetonitrile/acetic acid solution [27-29]. The carboxylic acid is required to increase the efficiency of the reaction and the epoxide/diol product ratio. The competitive dihydroxylation reaction suggested the participation of different active species in these oxidations (Scheme 2). [Pg.85]


See other pages where Peroxidation of olefins is mentioned: [Pg.527]    [Pg.615]    [Pg.39]    [Pg.527]    [Pg.615]    [Pg.39]    [Pg.208]    [Pg.403]    [Pg.481]    [Pg.101]    [Pg.119]    [Pg.179]    [Pg.73]    [Pg.981]    [Pg.187]    [Pg.188]    [Pg.198]    [Pg.201]    [Pg.202]    [Pg.207]    [Pg.220]    [Pg.222]    [Pg.225]    [Pg.448]    [Pg.84]    [Pg.87]    [Pg.93]    [Pg.611]    [Pg.100]    [Pg.47]    [Pg.52]    [Pg.53]    [Pg.64]    [Pg.116]    [Pg.570]    [Pg.181]   
See also in sourсe #XX -- [ Pg.39 ]




SEARCH



Olefins peroxide

© 2024 chempedia.info