Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Permeability complex

The bioflavanoids (vitamin P complex) are substances which maintain the small blood vessel walls. The substances are widely distributed among plants, eg, all citms fmits, and have been used medicinally to decrease capillary permeability and fragility. [Pg.386]

Transport. Wood is composed of a complex capillary network through which transport occurs by capillarity, pressure permeability, and diffusion. A detailed study of the effect of capillary stmcture on the three transport mechanisms is given in Stamm (13). [Pg.323]

Compression-Permeability Tests Instead of model leaf tests, compression-permeabihty experiments may be substituted with advantage for appreciably compressible sohds. As in the case of constant-rate filtratiou, a single run provides data equivalent to those obtained from a series of constant-pressure runs, but it avoids the data-treatment complexity of constant-rate tests. [Pg.1706]

A microscopic description characterizes the structure of the pores. The objective of a pore-structure analysis is to provide a description that relates to the macroscopic or bulk flow properties. The major bulk properties that need to be correlated with pore description or characterization are the four basic parameters porosity, permeability, tortuosity and connectivity. In studying different samples of the same medium, it becomes apparent that the number of pore sizes, shapes, orientations and interconnections are enormous. Due to this complexity, pore-structure description is most often a statistical distribution of apparent pore sizes. This distribution is apparent because to convert measurements to pore sizes one must resort to models that provide average or model pore sizes. A common approach to defining a characteristic pore size distribution is to model the porous medium as a bundle of straight cylindrical or rectangular capillaries (refer to Figure 2). The diameters of the model capillaries are defined on the basis of a convenient distribution function. [Pg.65]

Ionic liquids have already been demonstrated to be effective membrane materials for gas separation when supported within a porous polymer support. However, supported ionic liquid membranes offer another versatile approach by which to perform two-phase catalysis. This technology combines some of the advantages of the ionic liquid as a catalyst solvent with the ruggedness of the ionic liquid-polymer gels. Transition metal complexes based on palladium or rhodium have been incorporated into gas-permeable polymer gels composed of [BMIM][PFg] and poly(vinyli-dene fluoride)-hexafluoropropylene copolymer and have been used to investigate the hydrogenation of propene [21]. [Pg.266]

For kaolinite the sample permeability was very low and the solution was poorly removed. The spectra (Figure 3C) are consequently complex, containing peaks for inner and outer sphere complexes, CsCl precipitate from resMual solution (near 200 ppm) and a complex spinning sideband pattern. Spectral resolution is poorer, but at 70% RH for instance, inner sphere complexes resonate near 16 ppm and outer sphere complexes near 31 ppm. Dynamical averaging of the inner and outer sphere complexes occurs at 70% RH, and at 100% RH even the CsCl precipitate is dissolved in the water film and averaged. [Pg.163]

The transmembrane potential derived from a concentration gradient is calculable by means of the Nemst equation. If K+ were the only permeable ion then the membrane potential would be given by Eq. 1. With an ion activity (concentration) gradient for K+ of 10 1 from one side to the other of the membrane at 20 °C, the membrane potential that develops on addition of Valinomycin approaches a limiting value of 58 mV87). This is what is calculated from Eq. 1 and indicates that cation over anion selectivity is essentially total. As the conformation of Valinomycin in nonpolar solvents in the absence of cation is similar to that of the cation complex 105), it is quite understandable that anions have no location for interaction. One could with the Valinomycin structure construct a conformation in which a polar core were formed with six peptide N—H moieties directed inward in place of the C—O moieties but... [Pg.211]

The vascular endothelium plays an important role in regulation of vascular tone and permeability. Dilatation of arterioles to increase blood flow and constriction of endothelial cells of postcapillary venules causing exsudation of plasma constituents illustrates the complex nature of this cell type. Moreover, by expression of adhesion molecules and secretion of chemokines endothelial cells play an important role in the recruitment of leukocytes to the inflamed area. Endothelial cells express two basic types of adhesion molecules on their surface ... [Pg.627]

FIGURE 6-15 Schematic representation of the ion permeability modulation for cation-responsive voltammetric sensors based on negatively charged lipid membranes. Complexation of the guest cation to the phospholipid receptors causes an increase of the permeability for the anionic marker ion. (Reproduced with permission from reference 49.)... [Pg.187]

Fig. 2. IgG-mediated systemic versus local anaphylaxis, a IgG-mediated systemic anaphylaxis. When allergen-IgG immune complexes are formed in the circulation, basophils immediately capture them through IgG receptors on their surface and are activated to release PAF, that in turn act on vascular endothelial cells, leading to increased vascular permeability, b Passive cutaneous anaphylaxis. When allergen-IgG immune complexes are formed in the skin, they stimulate tissue-resident mast cells to release chemical mediators such as histamine, leading to local inflammation. [Pg.92]

In bacteria and plants, the individual enzymes of the fatty acid synthase system are separate, and the acyl radicals are found in combination with a protein called the acyl carrier protein (ACP). However, in yeast, mammals, and birds, the synthase system is a multienzyme polypeptide complex that incorporates ACP, which takes over the role of CoA. It contains the vitamin pantothenic acid in the form of 4 -phosphopan-tetheine (Figure 45-18). The use of one multienzyme functional unit has the advantages of achieving the effect of compartmentalization of the process within the cell without the erection of permeability barriers, and synthesis of all enzymes in the complex is coordinated since it is encoded by a single gene. [Pg.173]

The toxic mechanism of action of these various jellyfish venoms is complex. The cardiotoxic reaction seems to focus on calcium transport and is blocked by the prior or post administration of therapeutic doses of verapamil (7J). In neuronal tissue, Chrysaora venom induces large cationic selective channels which open and close spontaneously. These channels are permeable to Na , Li, K, and Cs but not and the channels are present in spite of the treatment with sodium and potassium inhibitors such as tetrodotoxin and tetraethylammonium (14). [Pg.335]


See other pages where Permeability complex is mentioned: [Pg.831]    [Pg.665]    [Pg.831]    [Pg.831]    [Pg.665]    [Pg.831]    [Pg.315]    [Pg.397]    [Pg.139]    [Pg.161]    [Pg.527]    [Pg.31]    [Pg.2132]    [Pg.2228]    [Pg.346]    [Pg.179]    [Pg.776]    [Pg.91]    [Pg.564]    [Pg.186]    [Pg.288]    [Pg.562]    [Pg.7]    [Pg.38]    [Pg.660]    [Pg.611]    [Pg.141]    [Pg.379]    [Pg.61]    [Pg.68]    [Pg.85]    [Pg.93]    [Pg.501]    [Pg.501]    [Pg.340]    [Pg.293]    [Pg.167]    [Pg.482]    [Pg.255]    [Pg.599]    [Pg.577]   
See also in sourсe #XX -- [ Pg.475 ]

See also in sourсe #XX -- [ Pg.469 , Pg.490 , Pg.497 ]




SEARCH



© 2024 chempedia.info