Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Peptide proteolytic digestion

PMIO fraction of ambient aerosols " major histocompatibihty complex (MHC)-associated peptides proteolytic digest of glycoproteins ... [Pg.88]

The proteolytic digestion of j6-lactoglobulin was carried out with trypsin which, as indicated in Table 5.4 above, is expected to cleave the polypeptide backbone at the carboxy-terminus side of lysine (K) and arginine (R). On this basis, and from the known sequence of the protein, nineteen peptide fragments would be expected, as shown in Table 5.7. Only 13 components were detected after HPLC separation and, of these, ten were chosen for further study, as shown in Table 5.8. [Pg.214]

There are two main classes of proteolytic digestive enzymes (proteases), with different specificities for the amino acids forming the peptide bond to be hydrolyzed. Endopeptidases hydrolyze peptide bonds between specific amino acids throughout the molecule. They are the first enzymes to act, yielding a larger number of smaller fragments, eg, pepsin in the gastric juice and trypsin, chymotrypsin, and elastase secreted into the small intestine by the pancreas. Exopeptidases catalyze the hydrolysis of peptide bonds, one at a time, fi"om the ends of polypeptides. Carboxypeptidases, secreted in the pancreatic juice, release amino acids from rhe free carboxyl terminal, and aminopeptidases, secreted by the intestinal mucosal cells, release amino acids from the amino terminal. Dipeptides, which are not substrates for exopeptidases, are hydrolyzed in the brush border of intestinal mucosal cells by dipeptidases. [Pg.477]

Fig. 3. (A) Disposition of afi unit in the membrane, based on sequence information [14,15], selective proteolytic digestion of the a subunit [5,6] and hydrophobic labelling (Table 1). The model for the (S subunit is based on sequencing of surface peptides and identification of S-S bridges [64,65]. T, T2 and C3 show location of proteolytic splits. CHO are glycosylated asparagines in the P subunit. (B) Peptide fragments remaining in the membrane after extensive tryptic digestion of membrane-bound Na,K-ATPase from outer medulla of pig kidney as described by Karlish et al. [7,58]. Fig. 3. (A) Disposition of afi unit in the membrane, based on sequence information [14,15], selective proteolytic digestion of the a subunit [5,6] and hydrophobic labelling (Table 1). The model for the (S subunit is based on sequencing of surface peptides and identification of S-S bridges [64,65]. T, T2 and C3 show location of proteolytic splits. CHO are glycosylated asparagines in the P subunit. (B) Peptide fragments remaining in the membrane after extensive tryptic digestion of membrane-bound Na,K-ATPase from outer medulla of pig kidney as described by Karlish et al. [7,58].
The second method also relies on site-specific chemical modification ofphosphoproteins (Oda et al., 2001). It involves the chemical replacement of phosphates on serine and threonine residues with a biotin affinity tag (Fig. 2.7B). The replacement reaction takes advantage of the fact that the phosphate moiety on phosphoserine and phosphothreonine undergoes -elimination under alkaline conditions to form a group that reacts with nucleophiles such as ethanedithiol. The resulting free sulfydryls can then be coupled to biotin to create the affinity tag (Oda et al., 2001). The biotin tag is used to purify the proteins subsequent to proteolytic digestion. The biotinylated peptides are isolated by an additional affinity purification step and are then analyzed by mass spectrometry (Oda et al., 2001). This method was also tested with phosphorylated (Teasein and shown to efficiently enrich phosphopeptides. In addition, the method was used on a crude protein lysate from yeast and phosphorylated ovalbumin was detected. Thus, as with the method of Zhou et al. (2001), additional fractionation steps will be required to detect low abundance phosphoproteins. [Pg.20]

Proteomics ultimately hinges upon protein identification to reveal the meaning behind the masses, spots, or peaks detected by other means. Because fraction collection is a natural component of HPLC separations, intact proteins can be readily collected either for direct analysis or for proteolytic digestion and identification using peptide mass fingerprinting (PMF) in conjunction with matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). [Pg.229]

Some reports even indicate that the conjugation of proteins or peptides with carbohydrates can increase dramatically their activity compared to that of the native state (Susaki et al., 1998). Carbohydrates also can provide a protective effect on modified peptides toward proteolytic digestion (Rudd et al., 1994) or mask recognition of a peptide by the immune system (Harding et al., 1993). The creation of neoglycoproteins thus can affect the activity of peptides and proteins, which are not normally glycosylated in vivo. [Pg.149]

The G-protein that has been termed Gp, and that is linked to phospholipase C activation, may in fact be Gaj 2 or Gc. 3. Ga is designated as the G-protein responsible for activation of phospholipase A2, which results in arachidonic acid release. Some experimental evidence indicates that, at least in HL-60 cells, different agonists can preferentially activate different phospholipases, and some of these are responsible for the activation of secretion. In neutrophils, the two pertussis-toxin-sensitive Ga-proteins (Gaj-2 and G j 3) have been identified by peptide mapping of proteolytic digests of the proteins, by peptide sequencing and by immunoblotting. Complementary-DNA clones for the mRNA of these two molecules have also been isolated from an HL-60 cDNA library. Gai-2 is five to ten times more abundant than Gai.3, the former component comprising 3% of the total plasma membrane proteins. It is possible that these two different Ga-subunits are coupled to different phospholipases (e.g. phospholipases C and D). Pertussis toxin inhibits the secretion of O2 after stimulation of neutrophils by fMet-Leu-Phe, but pertussis-toxin-insensitive G-proteins are also present in neutrophils. These may be members of the Gq family and may be involved in the activation of phospholipase Cp (see 6.3.1). [Pg.194]

I/cBa substrate peptide (Figure 7.11). These isolated j5-catenin and I/cBa peptides should accurately reflect the context of these destruction motifs in their respective full-length proteins, since Lysl9 and the destruction motif of j5-catenin are both in a 133-residue N-terminal region that has been previously shown to have a disordered structure by proteolytic digestion analysis [104]. The destruction motif of I/cBa similarly resides outside the structured ankyrin-repeat domain. [Pg.179]

In natural bioactive peptides the modes of cyclization described previously may be prevented either by the lack of suitable side-chain functionalities for lactamization or because these as well as the amino and carboxy termini are crucially involved in the bioactivity itself, and thus cannot be modified. In order to overcome these potential limitations, the concept of backbone cyclization has been proposed.129 According to this, the cyclization is performed by a covalent interconnection of two backbone amides by artificial spacers or of one backbone amide by a correctly functionalized spacer with side-chain functions or with the N- and C-terminus of the peptide (Scheme 21). This type of strategy significantly increases the diversity of possible ring structures (see Scheme 22) and of their related libraries (see Section 6.8.4). Its potential for enhancing the stability of the related peptide derivatives toward proteolytic digestion,[417 419 potency,141942" and selectivity,11417-419 is well-established. [Pg.502]

The need for enhanced detection sensitivity and automation has steadily increased for the separation and analysis of peptides from natural sources or proteolytic digestion of low abundance proteins this is also partly a consequence of the greater usage of combinatorial solid-phase synthetic approaches. Narrow bore (1-2 mm i.d.), microbore (0.5-1.0 mm i.d.), and capillary (100-500 pm i.d.) columns have provided attractive solutions to these problems. 1221 An important attribute of very small particle diameter micropellicular, porous, or nonporous RPC sorbents is that they are ideally suited to such microbore or capillary... [Pg.581]

Sequence information can be obtained for peptides with molecular weights up to 2500 Da. Collision-induced dissociation of larger peptides reveal at least partial sequence information that will often suffice to solve a particular problem. The collision-induced dissociation method has been particularly useful on peptides from proteolytic digests, from which MS/MS data on different peptides can help identify the structure of a digested protein. [Pg.691]

The data obtained in MS after the proteolytic digestion of gel-separated proteins into peptides and mass analysis of the peptides will enable the researcher to search protein and nucleotide sequences, which can then be checked against their theoretical fingerprints in databases. [Pg.88]


See other pages where Peptide proteolytic digestion is mentioned: [Pg.353]    [Pg.35]    [Pg.308]    [Pg.93]    [Pg.243]    [Pg.244]    [Pg.245]    [Pg.12]    [Pg.19]    [Pg.105]    [Pg.207]    [Pg.256]    [Pg.267]    [Pg.649]    [Pg.660]    [Pg.707]    [Pg.1008]    [Pg.1013]    [Pg.1026]    [Pg.413]    [Pg.188]    [Pg.390]    [Pg.357]    [Pg.53]    [Pg.233]    [Pg.269]    [Pg.177]    [Pg.152]    [Pg.270]    [Pg.25]    [Pg.210]    [Pg.165]    [Pg.603]    [Pg.90]    [Pg.369]    [Pg.110]    [Pg.254]   
See also in sourсe #XX -- [ Pg.389 ]




SEARCH



Proteolytic

Proteolytic digestion

© 2024 chempedia.info