Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Peptide disulfide bonds

Gorman, J.J. Feiguson, B.L. Nguyen, T.B. Use of 2,6-Dihydroxyacetophenone for Analysis of Fragile Peptides, Disulfide Bonding and Small Proteins by MALDI. Rapid Commun. Mass Spectrom. 1996, 70, 529-536. [Pg.437]

Cleavage of disulfide bonds occurs before hydrolysis of the protein into peptides. Disulfide bonds may be cleaved oxidatively, or they may be reduced and alkylated. Treatment of the native protein with performic acid, a powerful oxidizing agent, breaks disulfide bonds and converts cystine residues to cysteic acid (Figure 3-11). Reduction of the disulfide linkage by thiols, such as d-mercaptoethanol, yields reactive sulfhydryl groups. These groups may be stabilized by alkylation with iodoacetate or ethyleneimine to yield the carboxymethyl or aminoethyl derivative, respectively. [Pg.45]

The second application of the CFTI approach described here involves calculations of the free energy differences between conformers of the linear form of the opioid pentapeptide DPDPE in aqueous solution [9, 10]. DPDPE (Tyr-D-Pen-Gly-Phe-D-Pen, where D-Pen is the D isomer of /3,/3-dimethylcysteine) and other opioids are an interesting class of biologically active peptides which exhibit a strong correlation between conformation and affinity and selectivity for different receptors. The cyclic form of DPDPE contains a disulfide bond constraint, and is a highly specific S opioid [llj. Our simulations provide information on the cost of pre-organizing the linear peptide from its stable solution structure to a cyclic-like precursor for disulfide bond formation. Such... [Pg.164]

The Cyc conformer represents the structure adopted by the linear peptide prior to disulfide bond formation, while the two /3-turns are representative stable structures of linear DPDPE. The free energy differences of 4.0 kcal/mol between pc and Cyc, and 6.3 kcal/mol between pE and Cyc, reflect the cost of pre-organizing the linear peptide into a conformation conducive for disulfide bond formation. Such a conformational change is a pre-requisite for the chemical reaction of S-S bond formation to proceed. [Pg.171]

Y. Wang and K. Kuczera. Conformational free energy surface of the linear DPDPE peptide Cost of pre-organization for disulfide bond formation. J. Am. Chem. Soc., submitted, 1997. [Pg.175]

Y. Wang and K. Kuczera. Molecular dynamics simulations of cyclic and linear DPDPE Influence of the disulfide bond on peptide fiexibility. J. Phys. Chem., 100 2555-2563, 1996. [Pg.175]

The primary structure of a peptide is given by its ammo acid sequence plus any disulfide bonds between two cysteine residues The primary structure is determined by a systematic approach m which the protein is cleaved to smaller fragments even individual ammo acids The smaller fragments are sequenced and the mam sequence deduced by finding regions of overlap among the smaller peptides... [Pg.1151]

A disulfide bond (yellow) links the two peptide chains. (Courtesy of A.l. Wilson.)... [Pg.317]

Figure 17.11 Structure of EMPl dimer from x-ray crystallography. In the presence of EBP, the EMPl peptide forms a dimer. Each monomer (shown in red and blue) forms a p hairpin structure stabilized by hydrogen bonds (red dashes) and a disulfide bond (yellow). Figure 17.11 Structure of EMPl dimer from x-ray crystallography. In the presence of EBP, the EMPl peptide forms a dimer. Each monomer (shown in red and blue) forms a p hairpin structure stabilized by hydrogen bonds (red dashes) and a disulfide bond (yellow).
In addition to being a remarkable demonstration of the power of computer-based combinatorial design of a protein fold, this designed peptide is the shortest known peptide consisting entirely of naturally occurring amino acids that folds into a well-ordered structure without metal binding, oligomerization or disulfide bond formation. [Pg.368]

Insulin is composed of two peptide chains covalently linked by disulfide bonds (Figures 5.17 and 6.35). This monomer of insulin is the active form that binds to receptors in target cells. However, in solution, insulin spontaneously forms dimers, which themselves aggregate to form hexamers. The surface of the insulin molecule that self-associates to form hexamers is also the surface that binds to insulin receptors in target cells. Thus, hexamers of insulin are inactive. [Pg.207]

A disulfide bond between cysteine residues in different peptide chains links the otherwise separate chains together, while a disulfide bond between cysteine residues in the same chain forms a loop. Such is the case, for instance, with vasopressin, an antidiuretic hormone found in the pituitary gland. Note that the C-terminal end of vasopressin occurs as the primary amide, -CONHz, rather than as the free acid. [Pg.1029]

Natriuretic peptides are a family of peptide hormones. All of them contain a 17-amino acid long ring that is closed by a disulfide bond between two cysteine residues. ANP (atrial natriuretic peptide) is mainly expressed in the atria of the heart, whereas BNP (B-type natriuretic peptide) is synthesized in the ventricular myocardium. CNP occurs mainly in the endothelium and is thought to have a paracrine function. ANF and BNF lower blood pressure by a direct effect on smooth muscle and on the salt retention in the kidney. Natriuretic peptides bind and activate particulate guanylyl cyclases. [Pg.820]

Fig. 2.17 A / -peptide (92) two-helix bundle [1 79]. The parallel bundle was designed by dimerizing a 3,4-helical peptide via a disulfide bond. The interaction interface of the bundle consist of four hydrophobic residues ((S)-amino valeric acid, / -HLeu and... Fig. 2.17 A / -peptide (92) two-helix bundle [1 79]. The parallel bundle was designed by dimerizing a 3,4-helical peptide via a disulfide bond. The interaction interface of the bundle consist of four hydrophobic residues ((S)-amino valeric acid, / -HLeu and...
Figure 4-3. Oxidative cleavage of adjacent polypeptide chains linked by disulfide bonds (shaded) by per-formic acid (left) or reductive cleavage by 3-mercap-toethanol (right) forms two peptides that contain cysteic acid residues or cysteinyl residues, respectively. Figure 4-3. Oxidative cleavage of adjacent polypeptide chains linked by disulfide bonds (shaded) by per-formic acid (left) or reductive cleavage by 3-mercap-toethanol (right) forms two peptides that contain cysteic acid residues or cysteinyl residues, respectively.
Some proteins contain covalent disulfide (S— S) bonds that link the sulfhydryl groups of cysteinyl residues. Formation of disulfide bonds involves oxidation of the cysteinyl sulfhydryl groups and requires oxygen. Intrapolypeptide disulfide bonds further enhance the stability of the folded conformation of a peptide, while interpolypeptide disulfide bonds stabilize the quaternary structure of certain oligomeric proteins. [Pg.35]

Figure 9-6. Selective proteolysis and associated conformational changes form the active site of chymotrypsin, which includes the Aspl 02-His57-Ser195 catalytic triad. Successive proteolysis forms prochymotrypsin (pro-CT), Jt-chymotrypsin (jt-CT),and ultimately a-chymotrypsin (a-CT), an active protease whose three peptides remain associated by covalent inter-chain disulfide bonds. Figure 9-6. Selective proteolysis and associated conformational changes form the active site of chymotrypsin, which includes the Aspl 02-His57-Ser195 catalytic triad. Successive proteolysis forms prochymotrypsin (pro-CT), Jt-chymotrypsin (jt-CT),and ultimately a-chymotrypsin (a-CT), an active protease whose three peptides remain associated by covalent inter-chain disulfide bonds.

See other pages where Peptide disulfide bonds is mentioned: [Pg.116]    [Pg.125]    [Pg.566]    [Pg.116]    [Pg.125]    [Pg.566]    [Pg.163]    [Pg.1144]    [Pg.54]    [Pg.460]    [Pg.174]    [Pg.196]    [Pg.339]    [Pg.146]    [Pg.173]    [Pg.317]    [Pg.364]    [Pg.364]    [Pg.1144]    [Pg.141]    [Pg.141]    [Pg.161]    [Pg.464]    [Pg.1030]    [Pg.472]    [Pg.569]    [Pg.908]    [Pg.22]    [Pg.63]    [Pg.203]    [Pg.153]    [Pg.24]    [Pg.436]    [Pg.520]   
See also in sourсe #XX -- [ Pg.1029 ]

See also in sourсe #XX -- [ Pg.1029 ]

See also in sourсe #XX -- [ Pg.803 ]

See also in sourсe #XX -- [ Pg.1057 ]




SEARCH



Bonds disulfides

Disulfide bonds

Peptide bond

© 2024 chempedia.info