Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Peak intensity molecules

The absolute measurement of areas is not usually usefiil, because tlie sensitivity of the spectrometer depends on factors such as temperature, pulse length, amplifier settings and the exact tuning of the coil used to detect resonance. Peak intensities are also less usefiil, because linewidths vary, and because the resonance from a given chemical type of atom will often be split into a pattern called a multiplet. However, the relative overall areas of the peaks or multiplets still obey the simple rule given above, if appropriate conditions are met. Most samples have several chemically distinct types of (for example) hydrogen atoms within the molecules under study, so that a simple inspection of the number of peaks/multiplets and of their relative areas can help to identify the molecules, even in cases where no usefid infonnation is available from shifts or couplings. [Pg.1442]

Another related issue is the computation of the intensities of the peaks in the spectrum. Peak intensities depend on the probability that a particular wavelength photon will be absorbed or Raman-scattered. These probabilities can be computed from the wave function by computing the transition dipole moments. This gives relative peak intensities since the calculation does not include the density of the substance. Some types of transitions turn out to have a zero probability due to the molecules symmetry or the spin of the electrons. This is where spectroscopic selection rules come from. Ah initio methods are the preferred way of computing intensities. Although intensities can be computed using semiempirical methods, they tend to give rather poor accuracy results for many chemical systems. [Pg.95]

Relative photoionization cross sections for molecules do not vary gready between each other in this wavelength region, and therefore the peak intensities in the raw data approximately correspond to the relative abundances of the molecular species. Improvement in quantification for both photoionizadon methods is straightforward with calibration. Sampling the majority neutral channel means much less stringent requirements for calibrants than that for direct ion production from surfaces by energetic particles this is especially important for the analysis of surfaces, interfaces, and unknown bulk materials. [Pg.563]

The mass spectral fragmentations of 9,10-dimethoxy-2,3,4,6,7,ll/)-hexa-hydro-l//-pyrimido[6,l-n]isoquinolin-2-ones 140 and -2,4-diones 141, under electron ionization (at 70 eV) were examined by metastable ion analysis, a collosion-induced dissociation technique and exact mass measurement (97RCM1879). Methyl substituent on N(3) in 140 (R = Me) had a larger effect on both the fragmentation and on the peak intensities, than a methyl substituent on C(6) (R = Me). The ionized molecules of 140 (R = H) were rather stable, whereas 4-phenyl substitution on C(4) of 140 (R = Ph) promoted the fragmentations of the molecular ions. The hexahydro-1//-pyrimido[6,l-n]isoquinoline-2,4-diones 141 were more stable, than the hexahydro-l//-pyrimido[6,l-n]isoquinolin-2-ones 140, and the molecular ions formed base peaks. [Pg.248]

Fig. 9.1 The internuclear transfer of magnetization via NOE cross-relaxation in an isolated spin-pair. (A) Build-up curves for the cross-peak intensity in a 2D NOESY experiment for various internuclear distances r. The dashed line indicates a typical mixing time tm = 300rns used for drug-like molecules. Fig. 9.1 The internuclear transfer of magnetization via NOE cross-relaxation in an isolated spin-pair. (A) Build-up curves for the cross-peak intensity in a 2D NOESY experiment for various internuclear distances r. The dashed line indicates a typical mixing time tm = 300rns used for drug-like molecules.
In the normal-incident transmission measurements of LB films deposited on transparent substrates, the electric vector of the infrared beam is parallel to the film surface (Figure 5A). Therefore, only absorption bands which have the transition moments parallel to the film surface can be detected by this method. On the other hand, in the above-mentioned RA measurements, in which the p-polarized infrared beam is incident upon the LB film prepared on Ag-evaporated substrates at a large angle of incidence, we have a strong electric field perpendicular to the film surface as shown in Figure 5B. Therefore, in this case, only absorption bands which have the transition moments perpendicular to the film surface can be detected with a large intensity enhancement. Thus, if the molecules are highly oriented in the LB films, the peak intensities of particular bands should be different between the transmission and RA spectra. [Pg.160]

Enantioselective reagents for ammonium ions include, for example, a mixture containing a host chiral crown ether such as 196, possessing four (R) centers and symbolized as M, a host achiral crown ether of similar functionality, symbolized as R, and a salt of a guest chiral amine, symbolized as A, which is analyzed by fast atom bombardment MS (FAB-MS), and the relative peak intensity of the equilibrium complexes 7(MA)//(RA) is measured and correlated with the chirality of the guest molecule. Many host and guest molecules have been investigated405. [Pg.1114]

The FAB plasma provides conditions that allow to ionize molecules by either loss or addition of an electron to form positive molecular ions, M" , [52,89] or negative molecular ions, M, respectively. Alternatively, protonation or deprotonation may result in [Mh-H]" or [M-H] quasimolecular ions. Their occurrence is determined by the respective basicity or acidity of analyte and matrix. Cationization, preferably with alkali metal ions, is also frequently observed. Often, [Mh-H]" ions are accompanied by [MH-Na]" and [Mh-K]" ions as already noted with FD-MS (Chap. 8.5.7). Furthermore, it is not unusual to observe and [Mh-H]" ions in the same FAB spectmm. [52] In case of simple aromatic amines, for example, the peak intensity ratio M 7[Mh-H] increases as the ionization energy of the substrate decreases, whereas 4-substituted benzophenones show preferential formation of [Mh-H]" ions, regardless of the nature of the substituents. [90] It can be assumed that protonation is initiated when the benzophenone carbonyl groups form hydrogen bonds with the matrix. [Pg.389]

Q and 3Q correlations can be utilized in combination with highest efficiency. In some cases more than one spectrum of each is worthwhile to acquire because cross peak intensity is an explicit function of all coupling constants involved [6, 27, 28]. Coherences of higher order than 3Q exhibit significantly reduced sensitivity. Also, few spin systems in biologically relevant molecules allow sufficient communication between multiple spins to allow observation of higher order spin systems. [Pg.195]

With an interplanar separation of 3.73 A, 4,4 -paracyclophane is the lowest member of the series to exhibit an alkylbenzene absorption spectrum and the broad structureless fluorescence spectrum of this molecule with a peak intensity at 3400 A is by definition an excimer band further separation of the aromatic rings in 4,5 and 6,6 -paracyclophanes restores the fluorescence spectrum to that of the alkylbenzenes. These observations by Rice et al.115 illustrate the critical nature of the interplanar separation in determining the extent of interaction between -electron systems in the ground and excited configurations. [Pg.215]

The standard against which all peak intensities in a given mass spectrogram are measured is the most intense peak, called the base peak, which is arbitrarily assigned the value 100. If few parent molecules fragment—not a typical situation—the parent cation will furnish the base peak. [Pg.260]


See other pages where Peak intensity molecules is mentioned: [Pg.1510]    [Pg.2492]    [Pg.446]    [Pg.97]    [Pg.212]    [Pg.214]    [Pg.441]    [Pg.12]    [Pg.28]    [Pg.29]    [Pg.209]    [Pg.234]    [Pg.318]    [Pg.162]    [Pg.163]    [Pg.69]    [Pg.144]    [Pg.178]    [Pg.1049]    [Pg.221]    [Pg.231]    [Pg.307]    [Pg.310]    [Pg.199]    [Pg.26]    [Pg.239]    [Pg.93]    [Pg.251]    [Pg.542]    [Pg.255]    [Pg.156]    [Pg.173]    [Pg.240]    [Pg.397]    [Pg.2]    [Pg.28]    [Pg.89]    [Pg.317]    [Pg.389]   
See also in sourсe #XX -- [ Pg.16 ]




SEARCH



Peak intensities

Peaks intense

© 2024 chempedia.info