Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pathways zeolites

Many chemical reactions, especially those involving the combination of two molecules, pass through bulky transition states on their way from reactants to products. Carrying out such reactions in the confines of the small tubular pores of zeolites can markedly influence their reaction pathways. This is called transition-state selectivity. Transition-state selectivity is the critical phenomenon in the enhanced selectivity observed for ZSM-5 catalysts in xylene isomerization, a process practiced commercially on a large scale. [Pg.172]

The unreacted ethanol and the diethylether product retained >98% of from the starting 0-ethanol, indicating that no isotope scrambling occurred. Data in Table 4 demonstrate that was retained in the mixed ether and ethanol attack of the acid-activated 2-pentanol via an axial S 2 rear-attack was the predominant synthesis pathway. Evidently, the shape selectivity induced by the 2 M-5 zeolite channel structure (Figure 2) plays an important role in achieving the remarkably higher configuration inversion... [Pg.607]

These experiments demonstrate that the surface-catalyzed 2 reaction is far more effident than either the or C pathway for the dehydrative coupling of alcohols over the solid add catalysts tested. High selectivity to configurationally inverted chiral ethers ensues, espedally in the case of the HZSM-5 catalyst, in which the minor C or C paths were further suppressed by "bottling" of 3-ethoxypentane by the narrow zeolite chaimels. [Pg.608]

Conclusive evidence has been presented that surface-catalyzed coupling of alcohols to ethers proceeds predominantly the S 2 pathway, in which product composition, oxygen retention, and chiral inversion is controlled 1 "competitive double parkir of reactant alcohols or by transition state shape selectivity. These two features afforded by the use of solid add catalysts result in selectivities that are superior to solution reactions. High resolution XPS data demonstrate that Brpnsted add centers activate the alcohols for ether synthesis over sulfonic add resins, and the reaction conditions in zeolites indicate that Brpnsted adds are active centers therein, too. Two different shape-selectivity effects on the alcohol coupling pathway were observed herein transition-state constraint in HZSM-5 and reactant approach constraint in H-mordenite. None of these effects is a molecular sieving of the reactant molecules in the main zeolite channels, as both methanol and isobutanol have dimensions smaller than the main channel diameters in ZSM-S and mordenite. [Pg.610]

The reaction mechanism of SCR of NOx with decane on acid and iron-exchanged MFI-type zeolite was also investigated by operando FTIR spectroscopy and a special reactor cell enabling the use of water-containing gas mixtures. Brosius et al. found that water has a dramatic influence on the reaction pathway, while the formation of organic nitro and nitrite compounds does not proceed via chemisorbed states of NO, as observed in SCR with dry gases [174],... [Pg.128]

Brosius, R., Bazin, P., Thibault-Starzyk, F. et al., (2005) Operando FTIR study of reaction pathways of selective catalytic reduction of NOx with decane in the presence of water on iron-exchanged MFI-type zeolite, J. Catal., 234, 191. [Pg.142]

The first pathway proposed by Iizuka and Lunsford [17] considers the reduction of nitric oxide by CO over rhodium/Y-zeolite. It leads only to N20 as follows ... [Pg.147]

Chen, J., Eberlein, L., and Langford, C.H. (2002) Pathways of phenol and benzene photooxidation using Ti02 supported on a zeolite. Journal of Photochemistry and Photobiology A Chemistry, 148 (1-3), 183-189. [Pg.134]

Formation of products in paraffin cracking reactions over acidic zeolites can proceed via both unimolecular and bimolecular pathways [4], Based on the analysis of the kinetic rate equations it was suggested that the intrinsic acidity shows better correlation with the intrinsic rate constant (kinl) of the unimolecular hexane cracking than with the apparent rate constant (kapp= k K, where K is the constant of adsorption equilibrium). In... [Pg.121]

In this work the methanol and methyl iodide conversion and their co-reaction are investigated on Fe-Beta zeolite without any oxygen. Partly Fe-ion-exchanged Beta-300 i.e. Fe-H-Beta-300 (shortly Fe-Beta-300) zeolite keeps the light acidity to a certain extent, however the presence of Fe ions (as transition metal, Fe is an excellent Lewis acid) can modify the reaction pathway. This Fe-Beta-300 has been tested already by low temperature peat pyrolysis [6], At present, the adsorption as well as desorption of methanol are followed-up by radiodetectors using ( -radioisotopic labeling [4, 7]. The... [Pg.341]

The high activity of Cr-Cl catalyst may result probably from the formation of more active species such as Cr02+ complex cation during the ammoxidation reaction. Some authors [7] assumed that Cr(V) species occurred inside the zeolite structure as complex cation such as Cr02+ coordinated to two framework oxygen atoms and suggest the following two step process as the most probable pathway of chromate formation ... [Pg.348]

MCM-22, with a larger pore volume than ZSM-5, revealed behavior intermediate between what was observed for large- and medium-pore zeolites (126). Unverricht et al. (141) also examined MCM-22 at 353 and 393 K, it was found to produce mainly cracked products and dimethylhexanes and to deactivate rapidly. MCM-36 gained considerable interest that is evidenced by the patent literature (171-174). MCM-36 is a pillared zeolite based on the structure of MCM-22. Ideally, it should contain mesopores between layers of MCM-22 crystallites. This structure was found to be much more active and stable than MCM-22 (175). Alkane cracking experiments with zeolites having various pore dimensions evidenced the preference of monomolecular over sterically more demanding bimolecular pathways, such as hydride transfer, in small- and medium-pore zeolites (146). [Pg.286]

The zeolite structure also plays a large role in RC product distribution. Weitkamp et al.62 conducted experiments with Pt/HZSM-5 catalysts, which have very narrow pore sizes when compared with other zeolites, such as USY or SAPO. They found that c is I trans-1,3-dime thylcyclopentane was formed, while 1,1 and 1,2-DMCP were not. This indicates that the more oval shaped 1,3-DMCP was able to diffuse through the pores, while the more bulky and spherical isomers were not, and thus not seen in the product distribution. In short, when compared with dealkylation to cyclohexane, ring contraction of MCH is a more effective pathway to yield higher ON products. However, in order to further improve the ON, ring-opening of the RC isomers may be necessary, as shown below. [Pg.46]

Alvarez-Cohen et al. [91] explicitly showed that microbial transformation rates of trichloroethylene (TCE) were proportional to the aqueous TCE concentrations and independent from zeolite-sorbed TCE concentrations. Apparently in contrast to these findings, Crocker et al. [92] reported on the direct bioavailability of naphthalene sorbed to hexadecyltrimethylammonium (HDTMA)-modified smectite clay to Pseudomonas putida 17848, but not to Alcaligenes sp. strain NP-Alk. It should be noted that sorption to the hexadecyl chains of HDTMA resembles more the solubilisation by a surfactant than adsorption to a solid surface. Possibly, hydrophobic surface structures of strain 17848 allowed the close contact with HDTMA, thereby facilitating the uptake of naphthalene by a lipophilic pathway. [Pg.423]

The first mode of the high resolution C-NMR of adsorbed molecules was recently reviewed Q-3) and the NMR parameters were thoroughly discussed. In this work we emphasize the study of the state of adsorbed molecules, their mobility on the surface, the identification of the surface active sites in presence of adsorbed molecules and finally the study of catalytic transformations. As an illustration we report the study of 1- and 2-butene molecules adsorbed on zeolites and on mixed tin-antimony oxides (4>3). Another application of this technique consists in the in-situ identification of products when a complex reaction such as the conversion of methanol, of ethanol (6 7) or of ethylene (8) is run on a highly acidic and shape-selective zeolite. When the conversion of methanol-ethylene mixtures (9) is considered, isotopic labeling proves to be a powerful technique to discriminate between the possible reaction pathways of ethylene. [Pg.104]

Several reaction pathways for the cracking reaction are discussed in the literature. The commonly accepted mechanisms involve carbocations as intermediates. Reactions probably occur in catalytic cracking are visualized in Figure 4.14 [17,18], In a first step, carbocations are formed by interaction with acid sites in the zeolite. Carbenium ions may form by interaction of a paraffin molecule with a Lewis acid site abstracting a hydride ion from the alkane molecule (1), while carbo-nium ions form by direct protonation of paraffin molecules on Bronsted acid sites (2). A carbonium ion then either may eliminate a H2 molecule (3) or it cracks, releases a short-chain alkane and remains as a carbenium ion (4). The carbenium ion then gets either deprotonated and released as an olefin (5,9) or it isomerizes via a hydride (6) or methyl shift (7) to form more stable isomers. A hydride transfer from a second alkane molecule may then result in a branched alkane chain (8). The... [Pg.111]

Many of the characterization techniques described in this chapter require ambient or vacuum conditions, which may or may not be translatable to operational conditions. In situ or in opemndo characterization avoids such issues and can provide insight and information under more realistic conditions. Such approaches are becoming more common in X-ray adsorption spectroscopy (XAS) methods ofXANES and EXAFS, in NMR and in transmission electron microscopy where environmental instruments and cells are becoming common. In situ MAS NMR has been used to characterize reaction intermediates, organic deposits, surface complexes and the nature of transition state and reaction pathways. The formation of alkoxy species on zeolites upon adsorption of olefins or alcohols have been observed by C in situ and ex situ NMR [253]. Sensitivity enhancement techniques play an important role in the progress of this area. In operando infrared and RAMAN is becoming more widely used. In situ RAMAN spectroscopy has been used to online monitor synthesis of zeolites in pressurized reactors [254]. Such techniques will become commonplace. [Pg.159]

Introduction of Pt significantly enhances zeolite isomerization catalyst stabiUty and alters the reaction pathways. The Pt/acid ratio not only changes the isomeriza-tion/cracking ratio, but also changes the ratio of mono/di-branched isomers in Pt/Y [14]. High Pt dispersion and close proximity to acid sites correlate with high n-hexane conversion as well as high isomerization selectivity [20, 21]. [Pg.483]


See other pages where Pathways zeolites is mentioned: [Pg.314]    [Pg.511]    [Pg.314]    [Pg.511]    [Pg.347]    [Pg.71]    [Pg.314]    [Pg.275]    [Pg.601]    [Pg.651]    [Pg.49]    [Pg.61]    [Pg.251]    [Pg.363]    [Pg.437]    [Pg.96]    [Pg.362]    [Pg.216]    [Pg.373]    [Pg.45]    [Pg.103]    [Pg.218]    [Pg.194]    [Pg.307]    [Pg.315]    [Pg.320]    [Pg.422]    [Pg.423]    [Pg.435]    [Pg.445]    [Pg.446]    [Pg.456]    [Pg.457]    [Pg.461]    [Pg.463]   
See also in sourсe #XX -- [ Pg.247 ]




SEARCH



© 2024 chempedia.info