Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isocyanides, Passerini reaction

Like the Strecker synthesis, the Ugi reaction also involves a nucleophilic addition to an imine as the crucial step in which the stereogenic center of an a-amino acid derivative is formed4. The Ugi reaction, also denoted as a four-component condensation (A), is related to the older Passerini reaction5 (B) in an analogous fashion as the Strecker synthesis is to cyanohydrin formation. In both the Ugi and the Passerini reaction, an isocyanide takes the role of cyanide. [Pg.782]

When an isocyanide is treated with a carboxylic acid and an aldehyde or ketone, an a-acyloxy amide is prepared. This is called the Passerini reaction. The following mechanism has been postulated ... [Pg.1252]

The first MCR involving isocyanides (IMCR) was reported in 1921 with the Passerini reaction (P-3CR) [8], and over the years these reactions have become increasingly important and have been highlighted in several publications (for discussions, see below). Another older MCR which leads to (non-natural) a-amino acids is the Bucherer-Bergs reaction (BB-4CR), which was first reported in 1929 [9]. This type of transformation is closely related to the Strecker reaction, with C02 employed as a fourth component. [Pg.543]

Four-component condensation (4CC) of carboxylic acids, C-isocyanides, amines, and carbonyl compounds to afford diamides. Cf. Passerini reaction. [Pg.596]

Bossio R, Marcaccini S, Pepino R (1991) Synthesis of isocyanides and related compounds. Synthesis of oxazole derivatives via the Passerini reaction. Liebigs Ann Chem 1107-1108... [Pg.36]

Besides numerous applications of a-acidic isocyanides in classical IMCRs, such as the Ugi and Passerini reaction, the presence of an a-acidic proton enables other reaction paths and, subsequently, the development of novel MCRs. Here we focus on novel MCRs involving a-acidic isonitriles that have been described in literature since 1998. [Pg.137]

The Passerini reaction is a condensation between a carbonyl, a carboxylic acid and an isocyanide to form an ot-acyloxycarboxamide (Scheme 1) [5],... [Pg.165]

More recently, Aitken and coworkers described a short and convergent formal total synthesis of cyclotheonamide C using a process that involves a Passerini reaction, amine deprotection, and an acyl migration (PADAM sequence. Scheme 22) [90]. The key linear pentapeptide 22e is obtained by a Passerini reaction of isocyanide a, Fmoc-amino aldehyde b, and Boc-dipeptide acid e followed by Fmoc removal and consequently 0,N-acyl migration [91]. The macrocyclization was achieved with TBTU and HOBt after Boc and fBu removal in good yield (52%) to furnish intermediate f. [Pg.219]

Imidates, rearrangement of, 14, 1 Imines, additions of allyl, allenyl, propargyl stannanes, 64, 1 additions of cyanide, 70, 1 as dienophiles, 65, 2 synthesis, 70, 1 Iminium ions, 39, 2 65, 2 Imino Diels-Alder reactions, 65, 2 Indoles, by Nenitzescu reaction, 20, 3 by reaction with TosMIC, 57, 3 Ionic hydrogenation, 71, 1 Isocyanides, in the Passerini reaction, 65, 1... [Pg.590]

In the classical Passerini reaction [11], an isocyanide is condensed with a carbonyl compound and a carboxylic acid to afford a-acyloxyamides 7 (Scheme 1.2). When the carbonyl compound is prochiral, a new stereogenic center is generated. It is generally accepted that the reaction proceeds through intermediate 6, which rearranges to the product. The way this intermediate is formed is more debated. A possibility is a concerted non-ionic mechanism involving transition state 5. Since the simultaneous union of three molecules is not a very likely process, another possibility is a stepwise mechanism, with the intermediacy of a loosely bonded adduct 4 between the carbonyl compound and the carboxylic acid [2], Since all three... [Pg.2]

A recent screening of various chiral carboxylic acids has allowed the selection of galacturonic derivative 12 as a very efficient control in the stereochemical course of some Passerini reactions (Scheme 1.5). Although the de seems to be strongly dependent on the isocyanide employed, this result suggests the possibility of employing carboxylic acids as easily removable chiral auxiliaries in the asymmetric synthesis of biologically important mandelamides [16]. [Pg.4]

When a mineral or Lewis acid replaces the carboxylic component in the Passerini reaction, the final products are usually a-hydroxyamides. Also in this case, when chiral carbonyl compounds or isocyanides are employed, the asymmetric induction is, with very few exceptions, scarce [18, 19]. For example, the pyridinium trifluoroacetate-mediated reaction of racemic cyclic ketone 14 with t-butyl isocyanide is reported to afford a single isomer [19] (Scheme 1.7). This example, together with those reported in Schemes 1.3 and 1.4, suggests that high induction may be obtained only by using rigid cyclic or polycyclic substrates. [Pg.5]

The Passerini reaction between a-chloroketones, isocyanides, and carboxylic acids afforded a-acyloxy-jS-chlorocarboxamides 52, which, on treatment with an excess of powdered KOH in tetrahydrofuran, underwent O-deacylation followed by a Darzens-type O-alkylation to give the functionalized oxiranes 53. When carboxamides 52 were treated with an excess of CsF, with or without a phase-transfer catalyst, a different ring closure took place to afford 3-acyloxy-2-azetidinones 54 in high yields (Scheme 2.21) [46]. [Pg.44]

Davidson s synthesis consists of the cydization of a-acyloxyketones with ammonia or ammonium acetate to give 2,4,5-trisubstituted oxazoles. The Passerini reaction between arylglyoxals, carboxylic acids, and isocyanides afforded N-substituted 2-acyloxy-3-aryl-3-oxopropionamides 83 in high yields. Upon heating with an excess of ammonium acetate in acetic acid, compounds 83 were cydized to N,2,4-trisubstituted oxazole-5-carboxamides 84 in fair yields [59]. A large number of a-acyloxy-jS-ketoamides can be prepared by changing the reaction components, so the method provides straightforward access to a variety of oxazole-5-carboxamides (Scheme 2.30). [Pg.49]

In the classic Passerini reaction (P-3CR), an a-acyloxy carboxamide is formed from the reaction of an isocyanide, an aldehyde (or ketone), and a carboxylic acid. The... [Pg.282]

Lamberth and co-workers [23] synthesized several chiral mandelamides in a Passerini reaction of 1,2,3,4-tetra-O-acetyl-a-D-galacturonic acid with achiral benzal-dehydes and isocyanides (Scheme 9.15). [Pg.284]

Isocyanides, formal divalent carbon functionalities, are ideal candidates for the development of MCRs. Their reaction with carbonyls and imines, through an a-addition process, generates a zwitterionic intermediate, which is then trapped by a nucleophile. The resulting double a-addition adduct is unstable and rapidly undergoes the Mumm rearrangement to afford the final product (Scheme 12.32). The venerable three-component Passerini reaction is the first MCR based on this type of reaction process [116]. It addresses the formation of a-acyloxycarboxamides, which constitute a class of very versatile synthons in organic chemistry. In the present context, this reaction was utilized by Schmidt and collaborators for the elaboration of intermediate 234 [117], a key fragment for the synthesis of the prolyl endopeptidase inhibitor Eurystatin A 231 (Scheme 12.33) [118]. [Pg.384]

A few years later Passerini, developed a new 3CR towards a-acyloxy amides 9 which are formed by reacting an aldehyde or ketone 6, a carboxylic acid 8 and an isocyanide 7 (Scheme 2) ([25] and see for review [26]). Since the first synthesis of isocyanides (formerly known as isonitriles [27]) in 1858, the Passerini 3-component reaction (P-3CR) was the first MCR involving these reactive species. It has become one of the renowned examples of an important subclass of MCRs, the isocyanide-based MCRs (IMCRs). Especially important for the Passerini reaction, but also for a lot of other IMCRs, is the ability of isocyanides to form a-adducts, by reacting with nucleophiles and electrophiles (at the carbon atom). The nucleophilic... [Pg.101]

These proceeded in good to excellent yields just by stirring the emulsion in air no catalyst or other additive was required/ The organic acid obtained could then be reacted in the same pot in water in a Passerini reaction with an isocyanide and some unoxidized aldehyde. This study exemplifies an interesting control mechanism for tandem reactions, by using the phase behaviour of the reagents to control the reactivity. [Pg.54]

The mechanism of the Passerini reaction was widely examined. A plausible mechanism that is consistent with experimental data is as follows First, the carbonyl compound and the carboxylic acid forms a hydrogen bonded adduct. Subsequently, the carbon atom of the isocyanide group attacks the electrophilic carbonyl carbon, and also reacts with the nucleophilic oxygen atom of the carboxylic acid. The resulting intermediate cannot be isolated as it rearranges to the more stable a-acyloxycarboxamide in an intramolecular transacylation. [Pg.330]

L. Banfi and co-workers utilized the Passerini three component reaction to prepare a 9600 member hit generation library of nor-statines. " ° These compounds are potential transition state mimetics for the inhibitors of aspartyl proteases. The authors produced the library by starting out from eight A/-Boc-a-aminoaldehydes, twenty isocyanides and sixty carboxylic acids. The key Passerini reaction occurred under mild conditions. This transformation was followed by removal of the Boc protecting group and acyl transfer. Three representative examples of the library are shown. [Pg.331]

R. Bossio and co-workers developed a novel method for the synthesis of tetrasubstituted furan derivatives. The Passerini reaction between arylglyoxals, isocyanides, and cyanoacetic acids led to the formation of A/-substituted 3-aryl-2-cyanoacetoxy-3-oxopropionamides, which in the presence of amine bases underwent a Knoevenagei condensation providing A/-substituted 3-aryl-cyano-2,5-dihydro-5-oxofuran-2-carboxamides. [Pg.331]

Addition of TiCl4 to a solution of trimethylsiloxyphenylisocyanide in //-hexane yields the air sensitive octahedral diisocyanide complex TiCl4(CNR)2 (Scheme 114). This complex crystallizes with one molecule of //-hexane. Its molecular structure has been determined by X-ray crystallography.227 The formations of isocyanide titanium complexes are studied as species related with the Passerini reaction assisted by TiCl4. Three classes of compounds were identified and exemplified by isolated complexes (Scheme 115).228... [Pg.367]

Isocyanides have attracted much attention in synthetic organic chemistry, and have led to the development of a variety of useful synthetic transformations [1]. In particular, carbon-carbon bond forming reactions using isocyanides as key reagents have been extensively studied during the past 50 years, as they allow the realization of useful multi-component assembly reactions, such as the Ugi and Passerini reactions [2]. These have once again been highlighted in recent years with the development of combinatorial chemistry. The characteristic reactions of isocyanides are mostly ascribed to the unique reactivity of the isocyano carbon atom, which can be represented by a divalent, carbene-like electronic structure (Scheme 1). In this respect,... [Pg.78]

The Passerini reaction, also called the 3-CC reaction, which consists of the reaction of a carboxylic acid, a carbonyl compound, and an isocyanide providing an a-(acyloxy)carboxamide in a single step, was carried out for the first time in [bmim] [BFJ (Fig. 12.1) [1]. [Pg.290]


See other pages where Isocyanides, Passerini reaction is mentioned: [Pg.3]    [Pg.3]    [Pg.4]    [Pg.8]    [Pg.28]    [Pg.214]    [Pg.5]    [Pg.14]    [Pg.38]    [Pg.45]    [Pg.91]    [Pg.316]    [Pg.319]    [Pg.385]    [Pg.483]    [Pg.102]    [Pg.176]    [Pg.330]   
See also in sourсe #XX -- [ Pg.6 , Pg.295 ]

See also in sourсe #XX -- [ Pg.295 ]

See also in sourсe #XX -- [ Pg.6 , Pg.295 ]

See also in sourсe #XX -- [ Pg.295 ]




SEARCH



Isocyanides reactions

Monosaccharide Isocyanides Employed in the Ugi and Passerini Reaction

Passerini

Passerini reaction

© 2024 chempedia.info