Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Partial least squares factors

We are about to enter what is, to many, a mysterious world—the world of factor spaces and the factor based techniques, Principal Component Analysis (PCA, sometimes known as Factor Analysis) and Partial Least-Squares (PLS) in latent variables. Our goal here is to thoroughly explore these topics using a data-centric approach to dispell the mysteries. When you complete this chapter, neither factor spaces nor the rhyme at the top of this page will be mysterious any longer. As we will see, it s all in your point of view. [Pg.79]

Because of peak overlappings in the first- and second-derivative spectra, conventional spectrophotometry cannot be applied satisfactorily for quantitative analysis, and the interpretation cannot be resolved by the zero-crossing technique. A chemometric approach improves precision and predictability, e.g., by the application of classical least sqnares (CLS), principal component regression (PCR), partial least squares (PLS), and iterative target transformation factor analysis (ITTFA), appropriate interpretations were found from the direct and first- and second-derivative absorption spectra. When five colorant combinations of sixteen mixtures of colorants from commercial food products were evaluated, the results were compared by the application of different chemometric approaches. The ITTFA analysis offered better precision than CLS, PCR, and PLS, and calibrations based on first-derivative data provided some advantages for all four methods. ... [Pg.541]

The purpose of Partial Least Squares (PLS) regression is to find a small number A of relevant factors that (i) are predictive for Y and (u) utilize X efficiently. The method effectively achieves a canonical decomposition of X in a set of orthogonal factors which are used for fitting Y. In this respect PLS is comparable with CCA, RRR and PCR, the difference being that the factors are chosen according to yet another criterion. [Pg.331]

The multivariate techniques which reveal underlying factors such as principal component factor analysis (PCA), soft Independent modeling of class analogy (SIMCA), partial least squares (PLS), and cluster analysis work optimally If each measurement or parameter Is normally distributed In the measurement space. Frequency histograms should be calculated to check the normality of the data to be analyzed. Skewed distributions are often observed In atmospheric studies due to the process of mixing of plumes with ambient air. [Pg.36]

Spatial Interrelationships In the chemical composition among two or more blocks (sites) can be calculated by partial least squares (PLS) (9 ). PLS calculates latent variables slmlllar to PG factors except that the PLS latent variables describe the correlated (variance common to both sites) variance of features between sites. Regional Influences on rainwater composition are thus Identified from the composition of latent variables extracted from the measurements made at several sites. Gomparlson of the results... [Pg.37]

PLS (partial least squares) multiple regression technique is used to estimate contributions of various polluting sources in ambient aerosol composition. The characteristics and performance of the PLS method are compared to those of chemical mass balance regression model (CMB) and target transformation factor analysis model (TTFA). Results on the Quail Roost Data, a synthetic data set generated as a basis to compare various receptor models, is reported. PLS proves to be especially useful when the elemental compositions of both the polluting sources and the aerosol samples are measured with noise and there is a high correlation in both blocks. [Pg.271]

Fourier transform infrared (FTIR) spectroscopy of coal low-temperature ashes was applied to the determination of coal mineralogy and the prediction of ash properties during coal combustion. Analytical methods commonly applied to the mineralogy of coal are critically surveyed. Conventional least-squares analysis of spectra was used to determine coal mineralogy on the basis of forty-two reference mineral spectra. The method described showed several limitations. However, partial least-squares and principal component regression calibrations with the FTIR data permitted prediction of all eight ASTM ash fusion temperatures to within 50 to 78 F and four major elemental oxide concentrations to within 0.74 to 1.79 wt % of the ASTM ash (standard errors of prediction). Factor analysis based methods offer considerable potential in mineral-ogical and ash property applications. [Pg.44]

Haaland and coworkers (5) discussed other problems with classical least-squares (CLS) and its performance relative to partial least-squares (PLS) and factor analysis (in the form of principal component regression). One of the disadvantages of CLS is that interferences from overlapping spectra are not handled well, and all the components in a sample must be included for a good analysis. For a material such as coal LTA, this is a significant limitation. [Pg.50]

Experience in this laboratory has shown that even with careful attention to detail, determination of coal mineralogy by classical least-squares analysis of FTIR data may have several limitations. Factor analysis and related techniques have the potential to remove or lessen some of these limitations. Calibration models based on partial least-squares or principal component regression may allow prediction of useful properties or empirical behavior directly from FTIR spectra of low-temperature ashes. Wider application of these techniques to coal mineralogical studies is recommended. [Pg.58]

Latent variable, 4, 6. S Ji o Factor-. Partial least squares (PIS)... [Pg.177]

Factor The result of a transformation of a data matrix where the goal is to reduce the dimensionality of the data set. Estimating factors is necessary to construct principal component regression and partial least-squares models, as discussed in Section 5.3.2. (See also Principal Component.)... [Pg.186]

The diffusion of correlation methods and related software packages, such as partial-least-squares regression (PLS), canonical correlation on principal components, target factor analysis and non-linear PLS, will open up new horizons to food research. [Pg.135]

Human perception of flavor occurs from the combined sensory responses elicited by the proteins, lipids, carbohydrates, and Maillard reaction products in the food. Proteins Chapters 6, 10, 11, 12) and their constituents and sugars Chapter 12) are the primary effects of taste, whereas the lipids Chapters 5, 9) and Maillard products Chapter 4) effect primarily the sense of smell (olfaction). Therefore, when studying a particular food or when designing a new food, it is important to understand the structure-activity relationship of all the variables in the food. To this end, several powerful multivariate statistical techniques have been developed such as factor analysis Chapter 6) and partial least squares regression analysis Chapter 7), to relate a set of independent or "causative" variables to a set of dependent or "effect" variables. Statistical results obtained via these methods are valuable, since they will permit the food... [Pg.5]

M. C. Denham, Choosing the number of factors in partial least squares regression estimating and minimizing the mean squared error of prediction, J. Chemom., 14, 2000, 351-361. [Pg.238]

When all of the individual component spectra are not known, implicit calibration methods are often adopted. Among these, factor analysis methods such as principal component regression (PCR)24 and partial least squares (PLS)25 are frequently used because they can function under conditions in which the number of spectra used for calibration is less than the number of wavelengths sampled. For example, a calibration set may include 30 spectra with each spectrum having 500 data points (wavelengths). [Pg.337]

Principal component regression and partial least squares are two widely used methods in the factor analysis category. PCR decomposes the matrix of calibration spectra into orthogonal principal components that best capture the variance in the data. These new variables eliminate redundant information and, by using a subset of these principal components, filter noise from the original data. With this compacted and simplified form of the data, equation (12.7) may be inverted to arrive at b. [Pg.338]


See other pages where Partial least squares factors is mentioned: [Pg.107]    [Pg.272]    [Pg.276]    [Pg.93]    [Pg.107]    [Pg.272]    [Pg.276]    [Pg.93]    [Pg.723]    [Pg.726]    [Pg.168]    [Pg.8]    [Pg.102]    [Pg.210]    [Pg.345]    [Pg.51]    [Pg.298]    [Pg.512]    [Pg.217]    [Pg.340]    [Pg.624]    [Pg.11]    [Pg.58]    [Pg.113]    [Pg.145]    [Pg.35]    [Pg.111]    [Pg.624]    [Pg.387]    [Pg.245]    [Pg.81]    [Pg.168]    [Pg.189]    [Pg.95]    [Pg.351]    [Pg.137]   
See also in sourсe #XX -- [ Pg.141 ]




SEARCH



Partial least squares

© 2024 chempedia.info