Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium versatility

Versatile [3 + 2]-cydoaddition pathways to five-membered carbocydes involve the trimethylenemethane (= 2-methylene-propanediyl) synthon (B.M. Trost, 1986). Palladium(0)-induced 1,3-elimination at suitable reagents generates a reactive n -2-methylene-l,3-propa-nediyl complex which reacts highly diastereoselectively with electron-deficient olefins. The resulting methylenecyclopentanes are easily modified, e. g., by ozonolysis, hydroboration etc., and thus a large variety of interesting cyclopcntane derivatives is accessible. [Pg.84]

Transition-Metal Catalyzed Cyclizations. o-Halogenated anilines and anilides can serve as indole precursors in a group of reactions which are typically cataly2ed by transition metals. Several catalysts have been developed which convert o-haloanilines or anilides to indoles by reaction with acetylenes. An early procedure involved coupling to a copper acetyUde with o-iodoaniline. A more versatile procedure involves palladium catalysis of the reaction of an o-bromo- or o-trifluoromethylsulfonyloxyanihde with a triaLkylstaimylalkyne. The reaction is conducted in two stages, first with a Pd(0) and then a Pd(II) catalyst (29). [Pg.87]

Seven procedures descnbe preparation of important synthesis intermediates A two-step procedure gives 2-(HYDROXYMETHYL)ALLYLTRIMETH-YLSILANE, a versatile bifunctional reagent As the acetate, it can be converted to a tnmethylenemethane-palladium complex (in situ) which undergoes [3 -(- 2] annulation reactions with electron-deficient alkenes A preparation of halide-free METHYLLITHIUM is included because the presence of lithium halide in the reagent sometimes complicates the analysis and use of methyllithium Commercial samples invariably contain a full molar equivalent of bromide or iodide AZLLENE IS a fundamental compound in organic chemistry, the preparation... [Pg.224]

Ionic liquids have already been demonstrated to be effective membrane materials for gas separation when supported within a porous polymer support. However, supported ionic liquid membranes offer another versatile approach by which to perform two-phase catalysis. This technology combines some of the advantages of the ionic liquid as a catalyst solvent with the ruggedness of the ionic liquid-polymer gels. Transition metal complexes based on palladium or rhodium have been incorporated into gas-permeable polymer gels composed of [BMIM][PFg] and poly(vinyli-dene fluoride)-hexafluoropropylene copolymer and have been used to investigate the hydrogenation of propene [21]. [Pg.266]

The late Professor J. K. Stille pioneered the development of a very effective and versatile palladium-mediated C-C bond forming method - the palladium-catalyzed cross-coupling of organic electrophiles with organostannanes.48 This process continues to enjoy much success in organic synthesis because it proceeds in high yields under mild reaction conditions and because it tolerates a... [Pg.591]

As described in Section 2.3.2, vinylaziridines are versatile intermediates for the stereoselective synthesis of (E)-alkene dipeptide isosteres. One of the simplest methods for the synthesis of alkene isosteres such as 242 and 243 via aziridine derivatives of type 240 and 241 (Scheme 2.59) involves the use of chiral anti- and syn-amino alcohols 238 and 239, synthesizable in turn from various chiral amino aldehydes 237. However, when a chiral N-protected amino aldehyde derived from a natural ot-amino acid is treated with an organometallic reagent such as vinylmag-nesium bromide, a mixture of anti- and syn-amino alcohols 238 and 239 is always obtained. Highly stereoselective syntheses of either anti- or syn-amino alcohols 238 or 239, and hence 2,3-trans- or 2,3-as-3-alkyl-2-vinylaziridines 240 or 241, from readily available amino aldehydes 237 had thus hitherto been difficult. Ibuka and coworkers overcame this difficulty by developing an extremely useful epimerization of vinylaziridines. Palladium(0)-catalyzed reactions of 2,3-trons-2-vinylaziri-dines 240 afforded the thermodynamically more stable 2,3-cis isomers 241 predominantly over 240 (241 240 >94 6) through 7i-allylpalladium intermediates, in accordance with ab initio calculations [29]. This epimerization allowed a highly stereoselective synthesis of (E) -alkene dipeptide isosteres 243 with the desired L,L-... [Pg.64]

A versatile route to 3-benzoheteropines has been reported starting from o-phthalaldehyde, including the first preparations of 3-benzarsepines and the parent 3-benzothiepin and 3-benzoselenepins <96CC2183>. l,7-Dihydro-l//-dibenzo[c,c]tellurepin has been prepared from 2,2 -bis(bromomethyl)biphenyl and potassium tellurocyanate and its complexes with palladium and ruthenium species have been studied, a number of mono- and binuclear complexes are formed <96RTC427>. [Pg.324]

Kostic et al. recently reported the use of various palladium(II) aqua complexes as catalysts for the hydration of nitriles.456 crossrefil. 34 Reactivity of coordination These complexes, some of which are shown in Figure 36, also catalyze hydrolytic cleavage of peptides, decomposition of urea to carbon dioxide and ammonia, and alcoholysis of urea to ammonia and various carbamate esters.420-424, 427,429,456,457 Qggj-jy palladium(II) aqua complexes are versatile catalysts for hydrolytic reactions. Their catalytic properties arise from the presence of labile water or other solvent ligands which can be displaced by a substrate. In many cases the coordinated substrate becomes activated toward nucleophilic additions of water/hydroxide or alcohols. New palladium(II) complexes cis-[Pd(dtod)Cl2] and c - Pd(dtod)(sol)2]2+ contain the bidentate ligand 3,6-dithiaoctane-l,8-diol (dtod) and unidentate ligands, chloride anions, or the solvent (sol) molecules. The latter complex is an efficient catalyst for the hydration and methanolysis of nitriles, reactions shown in Equation (3) 435... [Pg.595]

The Suzuki reaction (the palladium-catalyzed cross-coupling of aryl halides with boronic acids) is arguably one of the most versatile and at the same time also one of the most often used cross-coupling reactions in modern organic synthesis [32], Carrying out high-speed Suzuki reactions under controlled microwave conditions can today be considered almost a routine synthetic procedure, given the enormous literature precedent for this transformation [7]. [Pg.114]

Palladium complexes are general and versatile catalysts for allylic amination.1,la lh The palladium-catalyzed allylic aminations of 1,3-symmetrically disubstituted substrates, including enantioselective versions, have been widely studied.1, a h It has been important to control the regioselectivity in allylic amination of unsymmetrical substrates 1 or 2 (Equation (1)). In general, palladium-catalyzed allylic amination gives the ( )-linear product 3Tla lh regiocontrol in amination has recently attracted much attention in approaches toward the branched product 4. [Pg.695]

Wacker cyclization has proved to be one of the most versatile methods for functionalization of olefins.58,59 However, asymmetric oxidative reaction with palladium(II) species has received only scant attention. Using chiral ligand 1,1 -binaphthyl-2,2 -bis(oxazoline)-coordinated Pd(II) as the catalyst, high enantioselectivity (up to 97% ee) has been attained in the Wacker-type cyclization of o-alkylphenols (66a-f) (Scheme 8-24). [Pg.470]

Y. Li, G. Vamvounis, J. Yu, and S. Holdcroft, A novel and versatile methodology for functionalization of conjugated polymers. Transformation of poly(3-bromo-4-hexylthiophene) via palladium-catalyzed coupling chemistry, Macromolecules, 34 3130-3132, 2001. [Pg.283]

Palladium catalyzed cross-coupling reactions of 1-substituted glycals have not only been limited to tributylstannyl derivatives. In fact, the versatility of this approach is significantly enhanced by the fact that C-l zinc-, indium-, or iodine-substituted glycals (easily accesible from glycals, see Scheme 7)... [Pg.293]

Traditional methods for the halogenation of Ge-H bonds are still widely used.1 116 A versatile palladium-metal-catalyzed method has been reported (Equation (93), Table 14).125... [Pg.726]

Carbonylation of unsaturated substrates has been known for decades but the reaction selectivity has been progressively improved by tuning the coordination sphere of late transition metal-based catalysts. Palladium assumes a privileged place in this chemistry and its versatility allows the use of mild conditions for the selective incorporation of CO into acyclic and cyclic compounds. Further improvements open a path to more sophisticated reactions, particularly cascade reactions. Similarly, asymmetric versions of most of these carbonylations can be envisioned. Atom economy and the green character of the process will probably be the key criteria for evaluating any new catalytic system. [Pg.127]

In a slightly less convenient procedure, but one which has general versatility, carbonylation of aryl (or vinyl) palladium compounds produces aryl, heteroaryl, and vinyl carboxylic acids. As with the other procedures, immediate upon its formation, the carboxylate anion migrates to the aqueous phase. Consequently, haloaromatic acids can be obtained from dihaloarenes, without further reaction of the second halogen atom, e.g. 1,4-dibromobenzene has been carbonylated (90% conversion) to yield 4-bromobenzoic acid with a selectivity for the monocarbonylation product of 95%. Additionally, the process is economically attractive, as the organic phase containing the catalyst can be cycled with virtually no loss of activity and ca. 4000 moles of acid can be produced for each mole of the palladium complex used [4],... [Pg.383]


See other pages where Palladium versatility is mentioned: [Pg.42]    [Pg.559]    [Pg.98]    [Pg.10]    [Pg.12]    [Pg.24]    [Pg.26]    [Pg.83]    [Pg.571]    [Pg.597]    [Pg.208]    [Pg.142]    [Pg.218]    [Pg.613]    [Pg.620]    [Pg.569]    [Pg.111]    [Pg.53]    [Pg.131]    [Pg.117]    [Pg.225]    [Pg.233]    [Pg.116]    [Pg.119]    [Pg.42]    [Pg.126]    [Pg.117]    [Pg.413]    [Pg.331]    [Pg.654]    [Pg.714]    [Pg.815]    [Pg.8]    [Pg.179]    [Pg.712]   
See also in sourсe #XX -- [ Pg.47 ]




SEARCH



Versatile

Versatility

© 2024 chempedia.info