Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium Stille reaction

Together with reactions named after Heck and Suzuki, the Stille reac-tion belongs to a class of modern, palladium-catalyzed carbon-carbon bond forming reactions. The palladium-catalyzed reaction of an organotin compound 2 with a carbon electrophile 1 is called Stille coupling. [Pg.264]

As in case of other palladium-catalyzed reactions, the general mechanism of the Stille reaction is best described by a catalytic cycle—e.g. steps a) to c) ... [Pg.264]

Palladium-catalyzed carbon-carbon bond forming reactions like the Suzuki reac-tion as well as the Heck reaction and the Stille reaction, have in recent years gained increased importance in synthetic organic chemistry. In case of the Suzuki reaction, an organoboron compound—usually a boronic acid—is reacted with an aryl (or alkenyl, or alkynyl) halide in the presence of a palladium catalyst. [Pg.272]

The palladium-catalyzed cyclization of compound 138 amply demonstrates the utility of the Stille reaction as a macrocyclization method (see Scheme 37). This efficient ring closure is just one of many examples disclosed by J.E. Baldwin and his group at Oxford.58 Interestingly, compound 138 can be employed as a stereoisomeric mixture of vinylstannanes because both stereoisomers converge on the same cyclized product. To rationalize this result, it was suggested that the configuration of the vinylstannane moiety is conserved in the cyclization, but that the macrocycle resulting from the (Z)-vinylstannane stereoisomer isomerizes to the thermodynamically favored trans product under the reaction condi-... [Pg.597]

Our general survey of palladium in organic synthesis must now come to an end. At the very least, we hope that our brief foray into this fascinating area conveys some of the vitality that characterizes research in this area. The remainder of this chapter will address the first total synthesis of rapamycin by the Nicolaou group. This work is predicated on a novel variant of the Stille reaction. [Pg.598]

Vinyltin compounds are very important in organic synthesis, since the vinyl moiety can be readily transferred to carbon in the (palladium-catalyzed) Stille reaction. The transfer is stereospecific, and the geometry of the vinyltin moiety can be easily checked using proton and carbon-13 NMR via the coupling satellites. [Pg.67]

The same authors performed a microwave assisted Stille reaction on the Rink amide (RAM) Tentagel polymer-tethered 4-iodobenzoic acid [5 b]. Successful palladium-catalyzed coupling of heteroaryl boronic acid with anchored 4-iodobenzoic acid enabled both >99% conversion of the starting material within 3.8 min (45 W) and a minimal decomposition of the solid support. The coupling reactions were realized in a mixture of polar solvents (H20-EtOH-DME, 2.5 1.5 6). [Pg.254]

The bromine atoms in 2,5-dibromo-l,3,4-thiadiazole 54 undergo a palladium-catalyzed Stille reaction with the organostannyl derivative 55 (Equation 7) <1998CEJ2211>. The thiadiazole 54 was co-polymerized with diethynyl benzene 56 (Equation 8) and diethynyl pyrrole in a Sonogashira cross-coupling reaction <2005MM4687>. [Pg.579]

In conclusion, the fantastically diverse chemistry of indole has been significantly enriched by palladium-catalyzed reactions. The accessibility of all of the possible halogenated indoles and several indolyl triflates has resulted in a wealth of synthetic applications as witnessed by the length of this chapter. In addition to the standard Pd-catalyzed reactions such as Negishi, Suzuki, Heck, Stille and Sonogashira, which have had great success in indole chemistry, oxidative coupling and cyclization are powerful routes to a variety of carbazoles, carbolines, indolocarbazoles, and other fused indoles. [Pg.163]

The Stille coupling of a-iodo enones is sluggish under standard conditions. Significant rate enhancement was observed for the Stille reaction of 2-chloro-5-tributylstannylpyridine and a-iodo enone 76 using triphenylarsine as the soft palladium ligand and Cul as the co-catalyst [63], Oxygenated functionalities did not affect the efficiency of the reaction provided both Ph3As and Cul were added. Additional manipulations of 77 resulted in the synthesis of (+)-epibatidine (78). [Pg.199]

Like most aryl halides, furyl halides and furyl triflates have been coupled with a variety of organostannanes including alkenyl, aryl, and heteroaryl stannanes in the presence of catalytic palladium. Carbamoylstannane 66 was prepared by treating lithiated piperidine with carbon monoxide and tributyltin chloride sequentially. The Stille reaction of 66 and 3-bromofuran then gave rise to amide 67 [61]. In another example, lithiation of 4,4-dimethyl-2-oxazoline followed by quenching with MesSnCl resulted in 2-(tributylstannyl)-4,4-dimethyl-2-oxazoline (68) in 70-80% yield [62], Subsequent Stille reaction of 68 with 3-bromofuran afforded 2-(3 -furyl)-4,4-dimethyl-2-oxazoline (69). [Pg.279]

The group R1 can be allyl, acyl, or alkynyl, and arynes can also act as the acceptors. The catalysts are usually Ni(cod)2, or ligated palladium. The mechanisms are not understood in detail, but a catalytic cycle involving the product of oxidative addition, Sn-M-R1, is thought to be involved. The stannylalkenes that are formed can then be subjected to reaction with electrophiles (e.g., AczO or RCH=0), or to coupling reactions in the presence of transition metals (e.g., the Stille reaction). [Pg.819]

In the Stille reaction, an organotin compound R1SnR3 and an organic electrophile R2X are treated with a palladium(O) or palladium(ll) catalyst, to generate the coupled product R R2 (Equation (55)).190... [Pg.826]

Less than two years after Chan and I disclosed the synthesis of 72 and 73, a more practical synthesis of 72 based on palladium-mediated reactions was reported by Armin de Meijere. I was deeply impressed by the highly efficient way Armin and his co-worker, Oliver Reiser, were preparing 72 as well as its derivatives. Immediately, I realized that it was impractical to compete with them. I therefore quit the dibenzo[2.2]paracyclophane field, with the strong conviction that many other unknown theoretically interesting molecules were still waiting for our pursuit. [Pg.125]

Displacement of the chlorine atom in 395 by sodium thiomethoxide or other mercaptans was reported recently. The same authors also described an efficient synthesis of 4-arylidene-2-phenyl-5(477)-oxazolones 399 from 395 and organo-stannanes via palladium catalyzed Stille reaction (Scheme 7.128). Selected examples are shown in Table 7.36 (Fig. 7.47). [Pg.220]


See other pages where Palladium Stille reaction is mentioned: [Pg.112]    [Pg.17]    [Pg.566]    [Pg.593]    [Pg.595]    [Pg.597]    [Pg.598]    [Pg.601]    [Pg.156]    [Pg.228]    [Pg.724]    [Pg.732]    [Pg.191]    [Pg.318]    [Pg.438]    [Pg.8]    [Pg.460]    [Pg.889]    [Pg.199]    [Pg.712]    [Pg.139]    [Pg.299]    [Pg.299]    [Pg.189]    [Pg.155]    [Pg.288]    [Pg.316]    [Pg.45]    [Pg.47]    [Pg.123]    [Pg.239]    [Pg.569]    [Pg.574]   
See also in sourсe #XX -- [ Pg.42 , Pg.43 , Pg.44 ]




SEARCH



Stille reaction

© 2024 chempedia.info