Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium parameters

Parameter Ruthenium Rhodium Palladium Osmium Iridium Platinum... [Pg.163]

Gold (III) and palladium (II) are sorbed quantitatively on all studied sorbents, except for methyleneamine, from solutions 0,2-2 M HCI. The degree of platinum (IV) complex extraction substantially depends not only on the nature of sorbent functional groups, but also on geometrical parameters of the matrix. This factor influences gold (III) and palladium (II) soi ption to a lesser extent. [Pg.262]

Aziridines, like oxiranes, undergo hydrogenolysis easily with or without inversion of configuration, depending on the catalyst, reaction parameters, and various additives 65aJ08). For example, hydrogenolysis of 2-methyl-2-phenylaziridine in ethanol occurs mainly with inversion over palladium but with retention over platinum, Raney nickel, or Raney cobalt. Benzene solvent or alkali favor retention over palladium as well. [Pg.139]

As has been shown by the X-ray diffraction method the parent metals (i.e. Pd or Ni), the a-phase, and /3-phase all have the same type of crystal lattice, namely face centered cubic of the NaCl type. However, the /9-phase exhibits a significant expansion of the lattice in comparison with the metal itself. Extensive X-ray structural studies of the Pd-H system have been carried out by Owen and Williams (14), and on the Ni-H system by Janko (8), Majchrzak (15), and Janko and Pielaszek (16). The relevant details arc to be found in the references cited. It should be emphasized here, however, that at moderate temperatures palladium and nickel hydrides have lattices of the NaCl type with parameters respectively 3.6% and 6% larger than those of the parent metals. Within the limits of the solid solution the metal lattice expands also with increased hydrogen concentration, but the lattice parameter does not depart significantly from that of the pure metal (for palladium at least up to about 100°C). [Pg.250]

The design of the Pd-membrane reactor was based on the chip design of reactor [R 10]. The membrane is a composite of three layers, silicon nitride, silicon oxide and palladium. The first two layers are perforated and function as structural support for the latter. They serve also for electrical insulation of the Pd film from the integrated temperature-sensing and heater element. The latter is needed to set the temperature as one parameter that determines the hydrogen flow. [Pg.288]

Table 9.5 shows the concentrations of pollutant parameters found in the precious metals subcategory raw waste streams. The major constituents are silver and gold, which are much more commonly used in metal finishing industry operations than palladium and rhodium. Because of their high cost, precious metals are of special interest to metal finishers. [Pg.352]

The same group has looked into the conversion of NO on palladium particles. The authors in that case started with a simple model involving only one type of reactive site, and used as many experimental parameters as possible [86], That proved sufficient to obtain qualitative agreement with the set of experiments on Pd/MgO discussed above [72], and with the conclusion that the rate-limiting step is NO decomposition at low temperatures and CO adsorption at high temperatures. Both the temperature and pressure dependences of the C02 production rate and the major features of the transient signals were correctly reproduced. In a more detailed simulation that included the contribution of different facets to the kinetics on Pd particles of different sizes, it was shown that the effects of CO and NO desorption are fundamental to the overall behavior... [Pg.88]

In contrast to kinetic models reported previously in the literature (18,19) where MO was assumed to adsorb at a single site, our preliminary data based on DRIFT results suggest that MO exists as a diadsorbed species with both the carbonyl and olefin groups being coordinated to the catalyst. This diadsorption mode for a-p unsaturated ketones and aldehydes on palladium have been previously suggested based on quantum chemical predictions (20). A two parameter empirical model (equation 4) where - rA refers to the rate of hydrogenation of MO, CA and PH refer to the concentration of MO and the hydrogen partial pressure respectively was developed. This rate expression will be incorporated in our rate-based three-phase non-equilibrium model to predict the yield and selectivity for the production of MIBK from acetone via CD. [Pg.265]

Table 11 Some photophysical parameters of palladium(II) complexes with increasing aromatic annelation compared with those of the corresponding zinc(II) complexes.176... Table 11 Some photophysical parameters of palladium(II) complexes with increasing aromatic annelation compared with those of the corresponding zinc(II) complexes.176...
The N2-physisorption characterisation results show that, no significant variations (less than 5%) are observed on the BET surface area, the total pore volume and the micropore volume of the different Pd-ZSM-5 catalysts, when the preparation method, the pretreatment gas, the charge-balancing cations and the palladium loading are modified. This result suggests that the ZSM-5 texture is stable with respect to the preparative parameter variations and that the observed activity differences are not related to any... [Pg.411]

Fig. 13.10 (a) Tapered optical fiber. p0 is the initial diameter, inset schematic cross section of the device p is the waist diameter, L0 is the length of the waist, t is the maximum thickness of the palladium film (shadowed area) and X is radiation wavelength, (b) Time response of the sensor to periodic cycles from a pure nitrogen atmosphere to a mixture of 3.9% hydrogen in nitrogen, (c) Time response of a sensor when it was exposed to different hydrogen concentrations, (d) Transmission versus hydrogen concentration sensor parameters p 1,300 nm, L 2 mm, and t 4 nm. Reprinted from Ref. 15 with permission. 2008 Optical Society of America... [Pg.352]

As an example for the specific case of vanadium alloys with palladium, the trend of the average atomic volume of the alloys is shown in Fig. 4.20 and compared with the phase diagram. These data were obtained by Ellner (2004) who studied the solid solutions of several metals (Ti, V, Cr, Mn, Fe, Co and Ni) in palladium. The alloys were heat treated at 800°C and water-quenched. From the unit cell parameters measured by X-ray diffraction methods, the average atomic volume was obtained Vat = c 14 (see Table 4.3). These data together with those of the literature were reported in a graph, and the partial molar (atomic) value of the vanadium volume in Pd solid solution (Fv)... [Pg.251]

Table 4.3. Unit cell parameters and average atomic volumes for palladium and Pd(V) solid solution (adapted from Ellner (2004)). Table 4.3. Unit cell parameters and average atomic volumes for palladium and Pd(V) solid solution (adapted from Ellner (2004)).
Table I lists the comparative parameters for the various indochinite spectra. Two methods were used in preparing these samples. The first two samples listed were prepared by grinding the indochinite specimen and binding the powder with water glass. The other samples were sliced with a diamond saw. The two spectral lines are given with their position, width, height, and area. The quadrupole splitting and isomer shift are listed in the columns labeled QS and IS. (The isomer shift is really a combination of isomer shift and temperature-dependent shift, and the values are relative to iron in palladium.) The raw data points were fitted with a two-peak Lorentzian using an IBM 7094 least-squares fit. Table I lists the comparative parameters for the various indochinite spectra. Two methods were used in preparing these samples. The first two samples listed were prepared by grinding the indochinite specimen and binding the powder with water glass. The other samples were sliced with a diamond saw. The two spectral lines are given with their position, width, height, and area. The quadrupole splitting and isomer shift are listed in the columns labeled QS and IS. (The isomer shift is really a combination of isomer shift and temperature-dependent shift, and the values are relative to iron in palladium.) The raw data points were fitted with a two-peak Lorentzian using an IBM 7094 least-squares fit.

See other pages where Palladium parameters is mentioned: [Pg.119]    [Pg.49]    [Pg.119]    [Pg.127]    [Pg.268]    [Pg.424]    [Pg.247]    [Pg.153]    [Pg.173]    [Pg.84]    [Pg.389]    [Pg.146]    [Pg.219]    [Pg.221]    [Pg.223]    [Pg.226]    [Pg.227]    [Pg.54]    [Pg.500]    [Pg.2]    [Pg.101]    [Pg.516]    [Pg.977]    [Pg.165]    [Pg.412]    [Pg.108]    [Pg.111]    [Pg.290]    [Pg.342]    [Pg.526]    [Pg.117]    [Pg.106]    [Pg.33]    [Pg.170]    [Pg.13]   
See also in sourсe #XX -- [ Pg.253 ]




SEARCH



Palladium band parameters

Palladium complexes activation parameters

Palladium complexes structural parameters

Palladium lattice parameters

© 2024 chempedia.info