Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium nucleophilic attack

Allyl derivatives 11 with identical substituents at Cl and C3 are an important class of substrates for enantioselective allylic substitution (Scheme 10). Starting from either enantiomer (11 or ent-ll) the same allyl-palladium complex 12 is formed. Therefore, the first part of the catalytic cycle leading to this intermediate usually is irrelevant for the stereoselectivity of the overall reaction [31]. The two termini of the free allyl system are enantiotopic. If the catalyst is chiral, they become diasterotopic in the allyl-metal complex and, therefore, may exhibit different reactivities toward nucleophiles. Under the influence of a suitable chiral ligand attached to palladium, nucleophilic attack can be rendered regioselective leading preferentially either to product 13 or its enantiomer ent-l3. [Pg.797]

In the Wacker process, the coordinated ethene undergoes nucleophilic attack by OH-. In the course of the redox reaction, palladium(II) is reduced... [Pg.223]

For trisubstituted olefins, the nucleophile attacks predominantly at the less substituted end of the allyl moiety, e.g. to afford a 78 22 mixture of 13 and 14 (equation 7). Both the oxidative addition of palladium(O) and the subsequent nucleophilic attack occur with inversion of configuration to give the product of net retention7. The synthesis of the sex pheromone 15 of the Monarch butterfly has been accomplished by using bis[bis(l,2-diphenylphosphinoethane)]palladium as a catalyst as outlined in equation 87. A substitution of an allyl sulfone 16 by a stabilized carbon nucleophile, such as an alkynyl or vinyl system, proceeds regioselectively in the presence of a Lewis acid (equation 9)8. The... [Pg.763]

Secondary amines can be added to certain nonactivated alkenes if palladium(II) complexes are used as catalysts The complexation lowers the electron density of the double bond, facilitating nucleophilic attack. Markovnikov orientation is observed and the addition is anti An intramolecular addition to an alkyne unit in the presence of a palladium compound, generated a tetrahydropyridine, and a related addition to an allene is known.Amines add to allenes in the presence of a catalytic amount of CuBr " or palladium compounds.Molybdenum complexes have also been used in the addition of aniline to alkenes. Reduction of nitro compounds in the presence of rhodium catalysts, in the presence of alkenes, CO and H2, leads to an amine unit adding to the alkene moiety. An intramolecular addition of an amine unit to an alkene to form a pyrrolidine was reported using a lanthanide reagent. [Pg.1001]

Yamamoto Y,Nakamura I (2005) Nucleophilic Attack by Palladium Species. 14 211-240 Yasuda H (1999) Organo Rare Earth Metal Catalysis for the Living Polymerizations of Polar and Nonpolar Monomers. 2 255-283 Yasuda N, see King AO (2004) 6 205-246... [Pg.295]

A reverse cross-coupling reactions mediated by palladium was used to develop a colorimetric sensitive chemodosimeter for the detection of trace palladium (II) salts [93]. The decolorization of 4 is produced by a nucleophilic attack of ethanethiol in basic DMSO solutions. Palladium detection is done via thiol scavenging from the 4-ethanethiol complex leading to a color turn-on of the parent squaraine. Naked-eye detection of Pd(NC>3)2 is as sensitive as 0.5 ppm in solution, and the instrument-based detection can go as low as 0.1 ppm. [Pg.85]

In most palladium-catalyzed oxidations of unsaturated hydrocarbons the reaction begins with a coordination of the double bond to palladium(II). In such palladium(II) olefin complexes (1), which are square planar d8 complexes, the double bond is activated towards further reactions, in particular towards nucleophilic attack. A fairly strong interaction between a vacant orbital on palladium and the filled --orbital on the alkene, together with only a weak interaction between a filled metal d-orbital and the olefin ji -orbital (back donation), leads to an electrophilic activation of the alkene9. [Pg.654]

Palladium-catalyzed oxidation of 1,4-dienes has also been reported. Thus, Brown and Davidson28 obtained the 1,3-diacetate 25 from oxidation of 1,4-cyclohexadiene by ben-zoquinone in acetic acid with palladium acetate as the catalyst (Scheme 3). Presumably the reaction proceeds via acetoxypalladation-isomerization to give a rr-allyl intermediate, which subsequently undergoes nucleophilic attack by acetate. This principle, i.e. rearrangement of a (allyl)palladium complex, has been applied in nonoxidative palladium-catalyzed reactions of 1,4-dienes by Larock and coworkers29. Akermark and coworkers have demonstrated the stereochemistry of this process by the transformation of 1,4-cyclohexadiene to the ( r-allyl)palladium complex 26 by treatment... [Pg.660]

In 1971, Brown and Davidson reported that 1,3-cyclohexadiene undergoes a palladium-catalyzed 1,4-diacetoxylation of unspecified stereochemistry28. The oxidant employed was p-benzoquinone. They were uncertain about the mechanism at the time but later work has shown that the reaction proceeds via a (jr-allyl)palladium intermediate and subsequent nucleophilic attack by acetate6,7. [Pg.662]

Attempts to employ allenes in palladium-catalyzed oxidations have so far given dimeric products via jr al lyI complexes of type 7i62.63. The fact that only very little 1,2-addition product is formed via nucleophilic attack on jral ly I complex 69 indicates that the kinetic chloropalladation intermediate is 70. Although formation of 70 is reversible, it is trapped by the excess of allene present in the catalytic reaction to give dimeric products. The only reported example of a selective intermolecular 1,2-addition to allenes is the carbonylation given in equation 31, which is a stoichiometric oxidation64. [Pg.678]

The oxidative addition of palladium(O) to aryl bromide generates the arylpalladium(n) intermediate 126 (Scheme 37). The electrophilic activation of the double bond by palladium facilitates the nucleophilic attack, resulting in cyclization. [Pg.316]

Arylative or silylative cyclizations of allenyl aldehydes or ketones have been reported (Equations (101) and (102)).459,459a The intermolecular process, that is, three-component coupling reaction of aldehydes, allenes, and arylboronic acids, is catalyzed by palladium as well (Equation (103)).46O 46Oa These reactions are proposed to proceed through nucleophilic attack of the allylpalladium intermediates to the carbonyl groups. [Pg.466]

The palladium-catalyzed multicomponent coupling reactions have attracted considerable interest.12,12a 12e A reaction using allylstannane 39 and allyl chloride 40 was applied to the three-component diallylation of benzylidenema-lonitrile and its congeners by Yamamoto et al 2 Analogous diallylation of isocyanate 41 was studied by Szabo et al. (Scheme 7).12a The reaction mechanism can be explained by formation of an amphoteric bis-allylpalladium intermediate 43 which undergoes an initial electrophilic attack on one of the allyl moieties followed by a nucleophilic attack on the other. [Pg.700]

The Tsuji-Trost reaction is the palladium-catalyzed allylation of nucleophiles [110-113]. In an application to the formation of an A-glycosidic bond, the reaction of 2,3-unsaturated hexopyranoside 97 and imidazole afforded A-glycopyranoside 99 regiospecifically at the anomeric center with retention of configuration [114], Therefore, the oxidative addition of allylic substrate 97 to Pd(0) forms the rc-allyl complex 98 with inversion of configuration, then nucleophilic attack by imidazole proceeds with a second inversion of configuration to give 99. [Pg.23]

Pyridine is a jt-electron-deficient heterocycle. Due to the electronegativity of the nitrogen atom, the a and y positions bear a partial positive charge, making the C(2), C(4), and C(6) positions prone to nucleophilic attacks. A similar trend occurs in the context of palladium chemistry. The a and y positions of halopyridines are more susceptible to the oxidative addition to Pd(0) relative to simple carbocyclic aryl halides. Even a- and y-chloropyridines are viable electrophilic substrates for Pd-catalyzed reactions under standard conditions. [Pg.183]

Rawal s group developed an intramolecular aryl Heck cyclization method to synthesize benzofurans, indoles, and benzopyrans [83], The rate of cyclization was significantly accelerated in the presence of bases, presumably because the phenolate anion formed under the reaction conditions was much more reactive as a soft nucleophile than phenol. In the presence of a catalytic amount of Herrmann s dimeric palladacyclic catalyst (101) [84], and 3 equivalents of CS2CO3 in DMA, vinyl iodide 100 was transformed into ortho and para benzofuran 102 and 103. In the mechanism proposed by Rawal, oxidative addition of phenolate 104 to Pd(0) is followed by nucleophilic attack of the ambident phenolate anion on o-palladium intermediate 105 to afford aryl-vinyl palladium species 106 after rearomatization of the presumed cyclohexadienone intermediate. Reductive elimination of palladium followed by isomerization of the exocyclic double bond furnishes 102. [Pg.285]

Thiazole is a jt-electron-excessive heterocycle. The electronegativity of the N-atom at the 3-position makes C(2) partially electropositive and therefore susceptible to nucleophilic attack. In contrast, electrophilic substitution of thiazoles preferentially takes place at the electron-rich C(5) position. More relevant to palladium chemistry, 2-halothiazoles and 2-halobenzothiazoles are prone to undergo oxidative addition to Pd(0) and the resulting o-heteroaryl palladium complexes participate in various coupling reactions. Even 2-chlorothiazole and 2-chlorobenzothiazole are viable substrates for Pd-catalyzed reactions. [Pg.297]

Palladium(II) is one of the most important transition metals in catalytic oxidations of allenes [1], Scheme 17.1 shows the most common reactions. Transformations involving oxidative addition of palladium(O) to aryl and vinyl halides do not afford an oxidized product and are discussed in previous chapters. The mechanistically very similar reactions, initiated by nucleophilic attack by bromide ion on a (jt-allene)pal-ladium(II) complex, do afford products with higher oxidation state and are discussed below. These reactions proceed via a fairly stable (jt-allyl)palladium intermediate. Mechanistically, the reaction involves three discrete steps (1) generation of the jt-allyl complex from allene, halide ion and palladium(II) [2] (2) occasional isomeriza-... [Pg.973]


See other pages where Palladium nucleophilic attack is mentioned: [Pg.182]    [Pg.182]    [Pg.146]    [Pg.2]    [Pg.174]    [Pg.484]    [Pg.207]    [Pg.8]    [Pg.9]    [Pg.11]    [Pg.17]    [Pg.20]    [Pg.21]    [Pg.24]    [Pg.26]    [Pg.706]    [Pg.574]    [Pg.243]    [Pg.241]    [Pg.58]    [Pg.113]    [Pg.697]    [Pg.714]    [Pg.168]    [Pg.202]    [Pg.174]    [Pg.397]    [Pg.965]   
See also in sourсe #XX -- [ Pg.211 ]




SEARCH



Nucleophile Nucleophilic attack

Nucleophile attack

Nucleophiles attack

Nucleophilic attack

Palladium attack

© 2024 chempedia.info