Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium electrocatalyst

Palladium electrocatalysts, 183 Palladium-alloy electrocatalysts, 298-300 Pareto-optimal plot, 85 Platinum-alloy electrocatalysts, 6, 70-71, 284-288, 317-337 Platinum-bismuth, 86-87, 224 Platinum chromium, 361 362 Platinum-cobalt, 71, 257-260, 319, 321-330, 334-335 Platinum-iron, 319, 321, 334-335 Platinum-molybdenum, 253, 319-320... [Pg.695]

Homogeneous catalysis by redox metals is also known for nonelectro-chemical processes. Thus, ethylene is oxidized to acetaldehyde in the Wacker process in aqueous solutions containing Pd " (504). Apart from complex formation and insertion (505), ionic oxidation and reduction may take place. It is noteworthy that palladium oxidation to form ions that act as homogeneous catalysts has been suggested as an important step in ethylene electrooxidation on solid palladium electrocatalysts 28, 29). [Pg.280]

M. nieva, V. Tsakova, and W. Erfurth, Electrochemical formation of bi-metal (copper-palladium) electrocatalyst supported on poly-3,4-ethyelenedioxythiophene, Electrochim. Acta, 52, 816-824 (2006). [Pg.333]

Xu JB, Zhao TS, Shen SY, Li YS (2010) Stabilization of the palladium electrocatalyst with alloyed gold for ethanol oxidation. Int J Hydrogen Energy 35 6490-6500... [Pg.156]

Huang S-Y, Ganesan P, Popov BN (2012) Electrocatalytic activity and stability of titania-supported platinum-palladium electrocatalysts for polymer electrolyte membrane fuel cell. ACS Catal 2 825-831... [Pg.312]

Shao M., Palladium electrocatalysts for hydrogen oxidation and oxygen tednction reactions, J. Power Sources, 196, 2433 (2011). [Pg.232]

Shao MH, Huang T, Liu P, Zhang J, Sasaki K, Vukmirovic MB, Adzic RR. 2006a. Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction. Langmuir 22 10409-10415. [Pg.312]

Tarasevich MR, Zhutaeva GV, Bogdanovskaya VA, Radina MV, Ehrenburg MR, Chalykh AE. 2007. Oxygen kinetics and mechanism at electrocatalysts on the base of palladium-iron system. Electrochim Acta 52 5108-5118. [Pg.313]

Bianchini, C. and Shen, P.K. (2009) Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chemical Reviews,... [Pg.132]

Tungsten carbide — WC, belongs to a class of Group IV B-VIB transition metal carbides and nitrides, often referred to as interstitial alloys, in which the carbon and nitrogen atoms occupy the interstitial lattice positions of the metal [i]. These compounds possess properties known from group VIII B precious metals like platinum and palladium [ii]. Thus, they show remarkable catalytic activities, attributed to a distinct electronic structure induced by the presence of carbon or nitrogen in the metal lattice. Tungsten carbide resembles platinum in its electrocatalytic oxidation activity (- electrocatalysis) and is therefore often considered as an inexpensive anode electrocatalyst for fuel cell [iii] and -> biofuel cell [iv] application. [Pg.215]

However, the electric potential of the electrocatalyst at its interface with the electrolyte (and thus the facility for charge transfer) can be easily and extensively altered at will to control rate and selectivity. For instance, a decrease of electrode potential by about 0.15 V can change the product selectivity for vinyl fluoride and chloride reduction on palladium by as much as 80% (31). In contrast, gas phase parallel reductions, with 5 kcal/mol difference in activation energies, would require a temperature increase from 500 K to 730 K for a comparable selectivity change. We should note here that the electrocatalytic specificity of the above reductions is quite similar to that of conventional heterogeneous catalytic reactions, but differs from that of conventional electrolytic reduction on noncatalytic electrodes (32). [Pg.221]

The presence of electrolyte, its possible adsorption on the electrocatalyst, and the electrode-electrolyte potential can alter the strength of reactant adsorption, the surface coverage, and the reaction rate (5,7,8). Thus, electro-generative hydrogenation of ethylene on platinum and palladium electrodes in acidic electrolytes proceeds more slowly than the corresponding gas phase catalytic reactions (33). However, electrocatalytic reduction of cyclopropane is faster than the catalytic one, probably due to a decrease in hydrogen and reactant competitive chemisorption. Some electrolyte ions and impurities can also poison the electrocatalysts (34). [Pg.221]

Similarly, the difficulty for electrocatalytic, electrogenerative hydrogenation of alkenes on platinum parallels the strength of gas phase adsorption of the substrate (55) acetylene > ethylene > propylene > cyclopropane. Palladium is a more active electrocatalyst for ethylene reduction than platinum (55), in agreement with adsorption strength on each metal. Selectivity and reduction rate of substituted alkenes also depends on adsorption... [Pg.254]

Apart from poisoning by adsorbing impurities, the working electrode potential can also contribute to suppress electrocatalytic activity. Platinum metals, for instance, passivate or form surface oxygen and oxide layers above 1 V (Section IV,D), which inhibit Oj reduction (779,257,252) and oxidation of carbonaceous reactants (7, 78, 253, 254) however, decomposition of hydrogen peroxide on platinum is accelerated by oxygen layers (255). Some electrocatalysts may corrode or dissolve, especially in acidic electrolytes, while reactants may contribute to dissolution. Thus, ethylene oxidation on palladium to acetaldehyde proceeds via a Pd-ethylene complex, which releases colloidal palladium in solution (28, 29). Equivalent to this is the surface roughening and the loss of Pt in gas phase ammonia oxidation (256, 257). [Pg.268]

Work in this area is, of course, not limited to using Pt black as the electrocatalyst. Virtually any electroactive catalyst, such as gold, rhodium, or palladium, which can be prepared with a particle size small enough to provide the necessary surface area and RF penetration, can be investigated. [Pg.300]

Recently, taking advantage of the very narrow size distribution of the metal particles obtained, microemulsion has been used to prepare electrocatalysts for polymer electrolyte membrane fuel cells (PEMFCs) Catalysts containing 40 % Pt Ru (1 1) and 40% Pt Pd (1 1) on charcoal were prepared by mixing aqueous solutions of chloroplatinic acid, ruthenium chloride and palladium chloride with Berol 050 as surfactant in iso-octane. Reduction of the metal salts was complete after addition of hydrazine. In order to support the particles, the microemulsion was destabilised with tetrahydrofurane in the presence of charcoal. Both isolated particles in the range of 2-5 nm and aggregates of about 20 nm were detected by transmission electron microscopy. The electrochemical performance of membrane electrode assemblies, MEAs, prepared using this catalyst was comparable to that of the MEAs prepared with a commercial catalyst. [Pg.285]

Noble metals applied as electrocatalysts for the oxygen reduction have been largely utilized because of their high electrocatalytic activity and stability. Investigations are concentrated on platinum, palladium, silver and gold. The application of noble metal catalysts is limited by two fundamental disadvantages high cost and low availability. Thus, it is important to construct cathodes with small amounts of the noble metal which are obtained, for example, by dispersed platinum on an appropriate support. [Pg.216]

Papageorgopoulos DC, Keijzta- M, Veldhuis JBJ et al (2(X)2) CO tolerance of Pd-iich platinum palladium carbrai-suppoTted electrocatalysts. J Electrochem Soc 149 ... [Pg.59]

To improve the electrocatalytic activity of platinum and palladium, the ethanol oxidation on different metal adatom-modified, alloyed, and oxide-promoted Pt- and Pd-based electrocatalysts has been investigated in alkaline media. Firstly, El-Shafei et al. [76] studied the electrocatalytic effect of some metal adatoms (Pb, Tl, Cd) on ethanol oxidation at a Pt electrode in alkaline medium. All three metal adatoms, particularly Pb and Tl, improved the EOR activity of ft. More recently, Pt-Ni nanoparticles, deposited on carbon nanofiber (CNE) network by an electrochemical deposition method at various cycle numbers such as 40, 60, and 80, have been tested as catalysts for ethanol oxidadmi in alkaline medium [77]. The Pt-Ni alloying nature and Ni to ft atomic ratio increased with increasing of cycle number. The performance of PtNi80/CNF for the ethanol electrooxidation was better than that of the pure Pt40/CNF, PtNi40/CNF, and PtNi60/CNF. [Pg.98]


See other pages where Palladium electrocatalyst is mentioned: [Pg.65]    [Pg.461]    [Pg.47]    [Pg.65]    [Pg.461]    [Pg.47]    [Pg.298]    [Pg.186]    [Pg.26]    [Pg.37]    [Pg.39]    [Pg.130]    [Pg.299]    [Pg.111]    [Pg.34]    [Pg.614]    [Pg.560]    [Pg.276]    [Pg.252]    [Pg.260]    [Pg.344]    [Pg.691]    [Pg.913]    [Pg.66]    [Pg.1946]    [Pg.280]    [Pg.231]    [Pg.182]    [Pg.119]   
See also in sourсe #XX -- [ Pg.221 ]




SEARCH



Electrocatalyst

Electrocatalysts

Palladium-based electrocatalysts

© 2024 chempedia.info