Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Paal pyrrole

Paal-Knorr Synthesis. The condensation of a 1,4-diketone, for example, with ammonia or a primary amine generally gives good yields of pyrroles many syntheses have been reported (24). The lack of avaHabitity of the appropriate 1,4-diketone sometimes limits the usefiilness of the reaction. [Pg.355]

Hydroxypyrroles. Pyrroles with nitrogen-substituted side chains containing hydroxyl groups are best prepared by the Paal-Knorr cyclization. Pyrroles with hydroxyl groups on carbon side chains can be made by reduction of the appropriate carbonyl compound with hydrides, by Grignard synthesis, or by iasertion of ethylene oxide or formaldehyde. For example, pyrrole plus formaldehyde gives 2-hydroxymethylpyrrole [27472-36-2] (24). The hydroxymethylpyrroles do not act as normal primary alcohols because of resonance stabilization of carbonium ions formed by loss of water. [Pg.358]

Paal synthesis thiophenes, 4, 884-885 Paal-I orr synthesis furan synthesis by, 4, 97 in heterophane synthesis, 7, 770 pyrroles, 4, 118... [Pg.737]

PAAL - KNORR Pyrrole Synthesis Pyrrole synthesis from 1,4-butanedlone and amines. [Pg.284]

Discovered more than a century ago, the Knorr and Paal-Knorr (PK) pyrrole syntheses are similar intermolecular condensations of amines with carbonyl compounds to give pyrroles. [Pg.79]

The Paal-Knorr pyrrole synthesis is the condensation of a primary amine 4 (or ammonia) with a 1,4-diketone 5 (or 1,4-dialdehyde) to give a pyrrole 6. ... [Pg.79]

Paal and Knorr independently discovered the straightforward reaction of primary amines (or ammonia) with 1,4-diketones to give pyrroles following loss of water7 Like the Knorr pyrrole synthesis, the PK method is a powerful and widely used method of constructing pyrroles (vide infra). [Pg.80]

In a series of papers in late 1884 and early 1885, Paal and Knorr demonstrated that several 1,4-dicarbonyls could be transformed into furans, pyrroles, and thiophenes. Paal first discovered this transformation and used it to prepare di-, tri-, and tetrasubstituted furans. For example, dicarbonyl 3 yielded disubstituted furan 4 upon treatment with weak acid. [Pg.168]

Shortly thereafter, Knorr reported that combining ammonia or primary amines with 1,4-dicarbonyls furnished substituted pyrroles (see Section 2.2), and Paal produced thiophenes by addition of hydrogen sulfide with 1,4-dicarbonyls. ... [Pg.168]

Separately, Paal and Knorr described the initial examples of condensation reactions between 1,4-diketones and primary amines, which became known as the Paal-Knorr pyrrole synthesis. Paal also developed a furan synthesis in related studies. The central theme of these reactions involves cyclizations of 1,4-diketones, either in the presence of a primary amine (Paal-Knorr pyrrole synthesis), in the presence of a sulfur(II) source (Paal thiophene synthesis), or by dehydration of the diketone itself (Paal furan synthesis). [Pg.207]

Another important route to pyrroles is offered by the Paal-Knorr reaction, where the pyrrole system is formed by condensation of a 1,4-diketone 9... [Pg.181]

The use of microwaves for the preparation of aromatic five-membered heterocycles has been intensely investigated with excellent results in terms of yields and purities of the products prepared. The Paal-Knorr reaction, namely the cyclocondensation of a 1,4-dicarbonyl compound to give furans, pyrroles and thiophenes has been successfully carried out with the aid of microwaves. [Pg.217]

Two other examples of microwave-assisted Paal-Knorr reactions were reported in 2004, describing the synthesis of a larger set of pyrroles with different substituents around the ring. The methods differ mainly in the syntheses employed to produce the 1,4 dicarbonyl compounds required for the cyclization. A variation of the Stetter reaction between an acyl silane and dif-... [Pg.217]

Scheme 3 Synthesis of 1,4-disubstituted pyrroles via Paal-Knorr reaction... Scheme 3 Synthesis of 1,4-disubstituted pyrroles via Paal-Knorr reaction...
A two-step procedure was required for the preparation of a diverse set of pyrrole-3-carboxylic acid derivatives. The diketone 15 was prepared using a functional homologation of a 6-ketoester 14 with different aldehydes followed by oxidation with PCC. The Paal-Knorr reaction was carried out in AcOH in a sealed tube under microwave irradiation (180 °C, 5-10 min) to give differently substituted pyrroles with a COOMe group in position 3 (Scheme 5). This group was further transformed to expand the diversity of the products prepared with this method [32]. [Pg.218]

An interesting family of polycyclic pyrroles was described in 2005 using again the synthetic sequence of a Stetter reaction for the preparation of the starting 1,4 diketones followed by a microwave-assisted Paal-Knorr condensation [35]. For example, cyclopentenone 23 (obtained in a Pauson-Khand cyclization) reacted imder Stetter reaction conditions to give the amino ketone 25 (Scheme 8). The microwave-assisted Paal-Knorr cyclization of 25 with different amines gave a small collection of tricychc pyrrole 2-carbox-amides. [Pg.219]

Some advances have been made in the Paal-Knorr synthesis of pyrroles by the condensation of primary amines with 1,4-dicarbonyl species. For instance, a new synthetic route to monosubstituted succinaldehydes allows for the facile preparation of 3-substituted pyrroles <96TL4099>. Additionally, a general method for the synthesis of 1-aminopyiroles has been devised by the condensation of commercially available 2,2,2-trichloroethyl- or 2-(tri-methylsilyl)ethylhydrazine with 1,4-dicarbonyl compounds <96JOCl 180>. A related route to such compounds involves the reaction of a-halohydrazones with p-dicarbonyl compounds <96H(43)1447>. Finally, hexamethyldisilazane (HMDS) can be utilized as the amine component in the Paal-Knorr synthesis in the presence of alumina, and this modification has been employed in the synthesis of tm azaprostacyclin analog <96S1336>. [Pg.97]

The retro-Paal-Knorr ring opening reaction leading to 1,4-dicarbonyl compounds was accomplished by heating iV-substituted pyrroles in a citrate buffer <06SL1428>. The sequence was coupled with a forward Paal-Knorr reaction enabling the exchange of the N-substituent on pyrroles. [Pg.140]

One of the most common approaches to pyrrole synthesis is the Paal-Knorr reaction, in which 1,4-dicarbonyl compounds are converted to pyrroles by acid-mediated dehydrative cyclization in the presence of a primary amine. The group of Taddei has reported a microwave-assisted variation of the Paal-Knorr procedure, whereby a small array of tetrasubstituted pyrroles was obtained (Scheme 6.181) [342], The pyrroles were effectively synthesized by heating a solution of the appropriate 1,4-dicarbonyl compound in the presence of 5 equivalents of the primary amine in acetic acid at 180 °C for 3 min. The same result was obtained by heating an identical mixture under open-vessel microwave conditions (reflux) for 5 min. Interestingly, the authors were unable to achieve meaningful product yields when attempting to carry out the same transformation by oil-bath heating. [Pg.224]

A different approach toward highly substituted pyrroles involving a one-pot sila-Stetter/Paal-Knorr strategy was realized by Bharadwaj and Scheidt (Scheme 6.182) [343]. In this multicomponent synthesis, catalyzed by a thiazolium salt, an acyl anion conjugate addition reaction of an acylsilane (sila-Stetter) was coupled in situ with the conventional Paal-Knorr approach. Employing microwave conditions at 160 °C for 15 min, the acylsilane was combined with the cx/l-unsaturated ketone in... [Pg.224]

Scheme 6.182 Sila-Stetter/Paal-Knorr pyrrole synthesis. Scheme 6.182 Sila-Stetter/Paal-Knorr pyrrole synthesis.
In addition to cydocondensation reactions of the Paal-Knorr type, cycloaddition processes play a prominent role in the construction of pyrrole rings. Thus, 1,3-dipo-lar cycloadditions of azomethine ylides with alkene dipolarophiles are very important in the preparation of pyrroles. The group of de la Hoz has studied the micro-wave-induced thermal isomerization of imines, derived from a-aminoesters, to azomethine ylides (Scheme 6.185) [346]. In the presence of equimolar amounts of /i-nitrostyrenes, three isomeric pyrrolidines (nitroproline esters) were obtained under solvent-free conditions in 81-86% yield within 10-15 min at 110-120 °C through a [3+2] cycloaddition process. Interestingly, using classical heating in an oil bath (toluene reflux, 24 h), only two of the three isomers were observed. [Pg.226]

In analogy to the Paal-Knorr pyrrole synthesis described by Taddei and coworkers [342] (Scheme 6.181), similar reaction conditions were used by these authors to cyclize 1,4-dicarbonyl compounds to give furans (Scheme 6.190). Thus, heating a solution of a 1,4-dicarbonyl compound in ethanol/water in the presence of a catalytic amount of hydrochloric acid at 140 °C for 3 min provided an excellent yield of the corresponding trisubstituted furan derivative. [Pg.229]

As will be discussed later, the novel pentacyclic antitumor alkaloid roseophilin continues to attract much synthetic effort and several approaches relied on the venerable Paal-Knorr condensation for construction of the pyrrole moiety. For instance, Trost utilized this reaction upon diketone 1 to afford the tricyclic core 2 of roseophilin in a strategy featuring an enyne metathesis as a key step <00JA3801>, while another formal synthesis of this alkaloid utilized a radical macrocyclization to produce the ketopyrrole core <00JCS(P1)3389>. [Pg.111]

Ferreira developed a novel method for the preparation of masked 1,4-dicarbonyl derivatives for utilization in the Paal-Knorr synthesis of pyrroles <00SC3215>. In this process, the reaction between diazocompound 3 and n-butyl vinyl ether using dirhodium tetraacetate as catalyst provides dihydrofurans 4 which are easily converted into substituted... [Pg.112]

Alternatively, Ballini devised a new strategy to synthesize tri-alkylated pyrroles from 2,5-dialkylfurans and nitroalkanes <00SL391>. This method involves initial oxidation of 2,5-dimethylfuran with magnesium monoperoxyphthalate to cA-3-hexen-2,5-dione (6). Conjugate addition of the nitronate anion derived from the nitro compound 7 to 6 followed by chemoselective hydrogenation of the C-C double bond of the resulting enones 8 (obtained by elimination of nitrous acid from the Michael adduct) completes the conversion to the alkylated y-diketones 9. Final cyclization to pyrroles 10 featured improved Paal-Knorr reaction conditions involving reaction of the diketones with primary amines in a bed of basic alumina in the absence of solvent. [Pg.112]

Paal-Knorr synthesis orgchem A method of converting a 1,4-dicarbonyl compound by cyclization with ammonia or a primary amine to a pyrrole. pol ko nor sin-... [Pg.277]

Based on the first FAB-MS data, we assumed IV and V-2 to be two isomers with a pyrrolemethanol and a pyrroleninone nucleus, respectively (fig. 8), originating from the condensation of A-DHLNL with an oxidized hydroxylysine residue (fig. 9). The proposed formation of IV is a Knorr-Paal condensation, which has been proposed for the formation of an other pyrrolic cross-link analogous to the heme-precursor porphobilinogen (Scott et al., 1981). In addition, both IV and V-2 had migration speeds comparable to HP (III) in capillary electrophoresis. The presence... [Pg.86]

Reaction of hydrazine or substituted hydrazine with 1,3-dicarbonyl compounds to provide the pyrazole or pyrazolone ring system. Cf. Paal-Knorr pyrrole synthesis (page 333). [Pg.331]

Gribble, G. W. Knorr and Paal—Knorr Pyrrole Syntheses In Name Reactions in Heterocyclic Chemistry, Eds, Li, J. J. Corey, E. J. Wiley Sons Hoboken, NJ, 2005, 79-88. (Review). [Pg.334]


See other pages where Paal pyrrole is mentioned: [Pg.118]    [Pg.79]    [Pg.80]    [Pg.80]    [Pg.81]    [Pg.325]    [Pg.76]    [Pg.325]    [Pg.139]    [Pg.224]    [Pg.333]    [Pg.461]   
See also in sourсe #XX -- [ Pg.94 ]




SEARCH



Continuous Paal—Knorr pyrrole synthesis

Heterocycle synthesis Paal-Knorr pyrrole

PAAL KNORR Pyrrole synthesis

Paal-Knorr Pyrrole synthesis Mechanism

Paal-Knorr synthesis of pyrroles

Pyrroles, Paal-Knorr synthesis

© 2024 chempedia.info