Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxygen surface chemistry

P.J. Goddard, and R.M. Lambert, Basic studies of the oxygen surface chemistry of silver Oxygen, dioxygen, oxide and superoxide on rubidium-dosedAg(l 1 ),Surf. Sci. 107,519-532(1981). [Pg.86]

The surface of activated alumina is a complex mixture of aluminum, oxygen, and hydroxyl ions which combine in specific ways to produce both acid and base sites. These sites are the cause of surface activity and so are important in adsorption, chromatographic, and catalytic appHcations. Models have been developed to help explain the evolution of these sites on activation (19). Other ions present on the surface can alter the surface chemistry and this approach is commonly used to manipulate properties for various appHcations. [Pg.155]

Other applications of REELM include monitoring variations like oxidation, segregation, and hydration in the surface chemistry of polycrystalline materials. Differences of 1 /10 of a monolayer in oxygen coverage due to variations in grain... [Pg.328]

The corrosion of tin by nitric acid and its inhibition by n-alkylamines has been reportedThe action of perchloric acid on tin has been studied " and sulphuric acid corrosion inhibition by aniline, pyridine and their derivatives as well as sulphones, sulphoxides and sulphides described. Attack of tin by oxalic, citric and tartaric acids was found to be under the anodic control of the Sn salts in solution in oxygen free conditions . In a study of tin contaminated by up to 1200 ppm Sb, it was demonstrated that the modified surface chemistry catalysed the hydrogen evolution reaction in deaerated citric acid solution. [Pg.809]

It is found that the CNF-HT has not catalytic activity for ODP. After oxidation, all the three samples show hi ly catalytic performances, which are shown in Fig.3. CNF-HL has the longest induction period among the three samples, and it has relatively low activity and propene selectivity at the beginning of the test. During the induction periods, the carbon balance exceeds 105% and then fall into 100 5%, which implies the CNF structure is stable and the surface chemistry of CNF reaches a dynamic equilibrium eventually. These results indicate that the catalytic activity of ODP can be attributed to the existence of surface oxygen complexes which are produced by oxidation. The highest propene yield(lS.96%) is achieve on CNF-HL at a 52.97% propane conversion. [Pg.747]

Table 2.1 Surface chemistry mediated via oxygen transients evidence from surface spectroscopy. Table 2.1 Surface chemistry mediated via oxygen transients evidence from surface spectroscopy.
Figure 5.11 Variation in the catalytic activity of an Mg(0001) surface when exposed to a propene-rich propene- oxygen mixture at room temperature. The surface chemistry is followed by XPS (a), the gas phase by mass spectrometry (b) and surface structural changes by STM (c, d). Initially the surface is catalytically active producing a mixture of C4 and C6 products, but as the surface concentrations of carbonate and carbonaceous CxHy species increase, the activity decreases. STM images indicate that activity is high during the nucleation of the surface phase when oxygen transients dominate. (Reproduced from Ref. 39). Figure 5.11 Variation in the catalytic activity of an Mg(0001) surface when exposed to a propene-rich propene- oxygen mixture at room temperature. The surface chemistry is followed by XPS (a), the gas phase by mass spectrometry (b) and surface structural changes by STM (c, d). Initially the surface is catalytically active producing a mixture of C4 and C6 products, but as the surface concentrations of carbonate and carbonaceous CxHy species increase, the activity decreases. STM images indicate that activity is high during the nucleation of the surface phase when oxygen transients dominate. (Reproduced from Ref. 39).
Less, but still significant, information is available on the surface chemistry of other nitrogen oxides. In terms of N20, that molecule has been shown to be quite reactive on most metals on Rh(110), for instance, it decomposes between 60 and 190 K, and results in N2 desorption [18]. N02 is also fairly reactive, but tends to convert into a mixed layer of adsorbed NO and atomic oxygen [19] on Pd(lll), this happens at 180 K, and is partially inhibited at high coverages. Ultimately, though the chemistry of the catalytic reduction of nitrogen oxide emissions is in most cases controlled by the conversion of NO. [Pg.71]

J.A. Chaney and P.E. Pehrsson, Work function changes and surface chemistry of oxygen, hydrogen, and carbon on indium tin oxide, Appl. Surf. Set, 180 214—226, 2001. [Pg.524]

In this chapter, we have discussed the application of metal oxides as catalysts. Metal oxides display a wide range of properties, from metallic to semiconductor to insulator. Because of the compositional variability and more localized electronic structures than metals, the presence of defects (such as comers, kinks, steps, and coordinatively unsaturated sites) play a very important role in oxide surface chemistry and hence in catalysis. As described, the catalytic reactions also depend on the surface crystallographic structure. The catalytic properties of the oxide surfaces can be explained in terms of Lewis acidity and basicity. The electronegative oxygen atoms accumulate electrons and act as Lewis bases while the metal cations act as Lewis acids. The important applications of metal oxides as catalysts are in processes such as selective oxidation, hydrogenation, oxidative dehydrogenation, and dehydrochlorination and destructive adsorption of chlorocarbons. [Pg.57]


See other pages where Oxygen surface chemistry is mentioned: [Pg.739]    [Pg.5]    [Pg.289]    [Pg.24]    [Pg.405]    [Pg.506]    [Pg.189]    [Pg.798]    [Pg.893]    [Pg.470]    [Pg.19]    [Pg.232]    [Pg.305]    [Pg.69]    [Pg.71]    [Pg.2]    [Pg.126]    [Pg.87]    [Pg.64]    [Pg.84]    [Pg.213]    [Pg.250]    [Pg.34]    [Pg.44]    [Pg.504]    [Pg.374]    [Pg.378]    [Pg.403]    [Pg.407]    [Pg.146]    [Pg.247]    [Pg.254]    [Pg.57]    [Pg.161]    [Pg.560]    [Pg.10]    [Pg.12]    [Pg.13]    [Pg.358]    [Pg.76]   
See also in sourсe #XX -- [ Pg.337 ]




SEARCH



Oxygen chemistry

Oxygen surface

Surface chemistry

Surface chemistry oxygen-containing functional groups

© 2024 chempedia.info