Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxygen redox systems

Fig. 5 Schematic representation of possible surface oxygen redox systems as mediators in the oxidation of NADH at solid electrodes [97, 98]. Fig. 5 Schematic representation of possible surface oxygen redox systems as mediators in the oxidation of NADH at solid electrodes [97, 98].
Generally the oxidant is compounded in one part of the adhesive, and the reductant in the other. Redox initiation and cure occur when the two sides of the adhesive are mixed. There also exist the one-part aerobic adhesives, which use atmospheric oxygen as the oxidant. The chemistry of the specific redox systems commonly used in adhesives will be discussed later. The rates of initiation and propagation are given by the following equations ([9] p. 221). [Pg.827]

Ascorbic acid is a reasonably strong reducing agent. The biochemical and physiological functions of ascorbic acid most likely derive from its reducing properties—it functions as an electron carrier. Loss of one electron due to interactions with oxygen or metal ions leads to semidehydro-L-ascorbate, a reactive free radical (Figure 18.30) that can be reduced back to L-ascorbic acid by various enzymes in animals and plants. A characteristic reaction of ascorbic acid is its oxidation to dehydro-L-aseorbie add. Ascorbic acid and dehydroascor-bic acid form an effective redox system. [Pg.599]

The next step is the insertion of a lattice oxygen into the allylic species. This creates oxide-deficient sites on the catalyst surface accompanied hy a reduction of the metal. The reduced catalyst is then reoxidized hy adsorbing molecular oxygen, which migrates to fill the oxide-deficient sites. Thus, the catalyst serves as a redox system. ... [Pg.217]

Grafting of polyacrylamide onto guar gum [431] and Ipomoea gum [178] in aqueous medium initiated by the potassium persulphate/ascorbic acid redox system was performed in the presence of atmospheric oxygen and Ag" " ions. After grafting, a tremendous increase of the viscosity of both gum solutions was achieved, and the grafted gums were found to be thermally more stable. [Pg.53]

It is considered useful to include here the potential-pH diagram for some redox systems related to oxygen (Fig. 2.1) [4]. Lines 11 and 33 correspond to the (a) and (b) dashed lines bounding the stability region of water, as depicted in all the subsequent Pourbaix diagrams. [Pg.58]

Oxygen electrode. In principle, a classical oxygen electrode in a liquid electrolyte would be possible if an electrode material were known on the surface of which the redox system 02/0H is electrochemically reversible however, Luther26 measured its standard potential from the following cell without a liquid junction ... [Pg.59]

Recent development of mitochondrial theory of aging is so-called reductive hotspot hypothesis. De Grey [465] proposed that the cells with suppressed oxidative phosphorylation survive by reducing dioxygen at the plasma membrane rather than at the mitochondrial inner membrane. Plasma membrane redox system is apparently an origin of the conversion of superoxide into hydroxyl and peroxyl radicals and LDL oxidation. Morre et al. [466] suggested that plasma membrane oxidoreductase links the accumulation of lesions in mitochondrial DNA to the formation of reactive oxygen species on the cell surface. [Pg.947]

W results not only from their redox-active ranging through oxidation states VI-IV, but because the intermediate V valence state is also accessible, they can act as interfaces between one- and two-electron redox systems, which allows them to catalyse hydroxylation of carbon atoms using water as the ultimate source of oxygen, (Figure 17.1) rather than molecular oxygen, as in the flavin-, haem- or Cu-dependent oxygenases, some of which we have encountered previously. For reviews see Hille, 2002 Brondino et al., 2006 Mendel and Bittner, 2006. [Pg.280]

To summarize, one can say that the electrochemical performance of CNT electrodes is correlated to the DOS of the CNT electrode with energies close to the redox formal potential of the solution species. The electron transfer and adsorption reactivity of CNT electrodes is remarkably dependent on the density of edge sites/defects that are the more reactive sites for that process, increasing considerably the electron-transfer rate. Additionally, surface oxygen functionalities can exert a big influence on the electrode kinetics. However, not all redox systems respond in the same way to the surface characteristics or can have electrocatalytical activity. This is very dependent on their own redox mechanism. Moreover, the high surface area and the nanometer size are the key factors in the electrochemical performance of the carbon nanotubes. [Pg.128]

In this paper selectivity in partial oxidation reactions is related to the manner in which hydrocarbon intermediates (R) are bound to surface metal centers on oxides. When the bonding is through oxygen atoms (M-O-R) selective oxidation products are favored, and when the bonding is directly between metal and hydrocarbon (M-R), total oxidation is preferred. Results are presented for two redox systems ethane oxidation on supported vanadium oxide and propylene oxidation on supported molybdenum oxide. The catalysts and adsorbates are stuped by laser Raman spectroscopy, reaction kinetics, and temperature-programmed reaction. Thermochemical calculations confirm that the M-R intermediates are more stable than the M-O-R intermediates. The longer surface residence time of the M-R complexes, coupled to their lack of ready decomposition pathways, is responsible for their total oxidation. [Pg.16]


See other pages where Oxygen redox systems is mentioned: [Pg.569]    [Pg.447]    [Pg.447]    [Pg.5380]    [Pg.80]    [Pg.569]    [Pg.447]    [Pg.447]    [Pg.5380]    [Pg.80]    [Pg.23]    [Pg.37]    [Pg.26]    [Pg.459]    [Pg.465]    [Pg.65]    [Pg.825]    [Pg.436]    [Pg.503]    [Pg.249]    [Pg.227]    [Pg.593]    [Pg.569]    [Pg.584]    [Pg.587]    [Pg.95]    [Pg.169]    [Pg.299]    [Pg.257]    [Pg.33]    [Pg.24]    [Pg.94]    [Pg.152]    [Pg.127]    [Pg.127]    [Pg.146]    [Pg.161]    [Pg.238]    [Pg.142]    [Pg.54]    [Pg.176]    [Pg.87]   
See also in sourсe #XX -- [ Pg.33 ]




SEARCH



Oxygen systems

Redox oxygen

Redox system

© 2024 chempedia.info