Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxygen field

This justifies all the work undertaken to arrive at fuel denitrification which, as is well known, is difficult and costly. Moreover, technological improvements can bring considerable progress to this field. That is the case with low NO burners developed at IFF. These consist of producing separated flame jets that enable lower combustion temperatures, local oxygen concentrations to be less high and a lowered fuel s nitrogen contribution to NOj. formation. In a well defined industrial installation, the burner said to be of the low NO type can attain a level of 350 mg/Nm, instead of the 600 mg/Nm with a conventional burner. [Pg.269]

Flartree D R, Flartree W and Swirles B 1940 Self-oonsistent field inoluding exohange and superposition of oonfigurations with some results for oxygen Phil. Trans. R. See. A 238 229-47 The work of Fook is given in ... [Pg.2194]

Highly protective layers can also fonn in gaseous environments at ambient temperatures by a redox reaction similar to that in an aqueous electrolyte, i.e. by oxygen reduction combined with metal oxidation. The thickness of spontaneously fonned oxide films is typically in the range of 1-3 nm, i.e., of similar thickness to electrochemical passive films. Substantially thicker anodic films can be fonned on so-called valve metals (Ti, Ta, Zr,. ..), which allow the application of anodizing potentials (high electric fields) without dielectric breakdown. [Pg.2722]

Once the atoms arc defined, the bonds between them arc specified in a bond block. Each line of this block specifies which two atoms are bonded, the multiplicity of the bond (the bond type entry) and the stereo configuration of the bond (there arc also three additional fields that arc unused in Molfiles and usually set to 0). The indices of the atoms reflect the order of their appearance in the atom block. In the example analyzed, V relates to the first carbon atom (see also Figure 2-24). "2" to the second one, 3" to oxygen atom, etc. Then the two first lines of the bond block of the analyzed file (Figure 2-29) describe the single bond between the two carbon atoms C1-C2 and the double bond C2=0-5, respectively. [Pg.50]

The chemical environment foran atom m a molecule is probably niiit iie to th at molecule. Chem istry tries to find unify in g concepts an d the atom type Is on e of those unifying con cepts. For example, the AMBER force field defines five atom types for oxygens ... [Pg.169]

In some force fields the interaction sites are not all situated on the atomic nuclei. For example, in the MM2, MM3 and MM4 programs, the van der Waals centres of hydrogen atoms bonded to carbon are placed not at the nuclei but are approximately 10% along the bond towards the attached atom. The rationale for this is that the electron distribution about small atoms such as oxygen, fluorine and particularly hydrogen is distinctly non-spherical. The single electron from the hydrogen is involved in the bond to the adjacent atom and there are no other electrons that can contribute to the van der Waals interactions. Some force fields also require lone pairs to be defined on particular atoms these have their own van der Waals and electrostatic parameters. [Pg.229]

In eleetronie strueture theory, the single-eonfiguration pieture (e.g., the Is22s22p4 deseription of the Oxygen atom) forms the mean-field starting point the eonfiguration interaetion (Cl) or perturbation theory teehniques are then used to systematieally improve this level of deseription. [Pg.230]

In order for the transferability of parameters to be a good description of the molecule, force fields use atom types. This means that a sp carbon will be described by different parameters than a. sp - carbon, and so on. Usually, atoms in aromatic rings are treated differently from sp atoms. Some force fields even parameterize atoms for specific functional groups. For example, the carbonyl oxygen in a carboxylic acid may be described by different parameters than the carbonyl oxygen in a ketone. [Pg.49]

The induced field of a carbonyl group (C=0) deshields protons in much Ihe same way lhal a carbon-carbon double bond does and Ihe presence of oxygen makes il even more eleclron wilhdrawmg Thus protons attached to C=0 m aldehydes are Ihe leasl shielded of any protons bonded to carbon They have chemical shifts m Ihe range 8 9-10... [Pg.530]

H NMR The chemical shift of the proton m the H—C—O—C unit of an ether is very similar to that of the proton m the H—C—OH unit of an alcohol A range of 8 3 2-4 0 IS typical The proton m the H—C—S—C unit of a sulfide appears at higher field than the corresponding proton of an ether because sulfur is less electronegative than oxygen... [Pg.690]

Section 16 18 An H—C—O—C structural unit m an ether resembles an H—C—O—H unit of an alcohol with respect to the C—O stretching frequency m its infrared spectrum and the H—C chemical shift m its H NMR spectrum Because sulfur is less electronegative than oxygen the H and chemical shifts of H—C—S—C units appear at higher field than those of H—C—O—C... [Pg.695]

The oxygen transfer rate for aerators is normally reported at standard conditions. Thus, ia order to make meaningful comparisons, the ORT under working or field conditions should be adjusted to standard conditions oxygen requirement for treatment (SORT) by means of... [Pg.342]

Concern for personnel exposure to hydrazine has led to several innovations in packaging to minimize direct contact with hydrazine, eg, Olin s E-Z dmm systems. Carbohydrazide was introduced into this market for the same reason it is a soHd derivative of hydrazine, considered safer to handle because of its low vapor pressure. It hydrolyzes to release free hydrazine at elevated temperatures in the boiler. It is, however, fairly expensive and contributes to dissolved soHds (carbonates) in the water (193). In field tests, catalyzed hydrazine outperformed both hydrazine and carbohydrazide when the feedwater oxygen and iron levels were critical (194). A pubUshed comparison is available (195) of these and other proposed oxygen scavengers, eg, diethyUiydroxylarnine, ydroquinone, methyethylketoxime, and isoascorbic acid. [Pg.291]


See other pages where Oxygen field is mentioned: [Pg.103]    [Pg.19]    [Pg.359]    [Pg.103]    [Pg.19]    [Pg.359]    [Pg.12]    [Pg.739]    [Pg.792]    [Pg.1514]    [Pg.2728]    [Pg.2803]    [Pg.465]    [Pg.229]    [Pg.230]    [Pg.498]    [Pg.194]    [Pg.251]    [Pg.312]    [Pg.591]    [Pg.230]    [Pg.120]    [Pg.525]    [Pg.652]    [Pg.953]    [Pg.29]    [Pg.30]    [Pg.91]    [Pg.270]    [Pg.278]    [Pg.340]    [Pg.470]    [Pg.203]    [Pg.302]    [Pg.322]    [Pg.394]    [Pg.221]    [Pg.348]    [Pg.369]    [Pg.412]   
See also in sourсe #XX -- [ Pg.335 ]




SEARCH



Field, oxygen tension

Oxygen Buffers in Field and Laboratory

© 2024 chempedia.info