Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxyferryl species

Fig. 14. A mechanism to explain heme modification in the P. vitcde catalase and possibly E. coli HPII. For simplicity, the phenyl ring of T3rr415 is not shown, and only ring III of the heme and the heme iron are shown. Compound I is an oxyferryl species formed, along with water, in the reaction of one H2O2 with the heme. The iron is in a formal Fe oxidation state, but one oxidation equivalent is delocalized on the heme to create the 0x0-Fe" -heme cation, shown as the starting species, compound I. A water on the proximal side of the heme is added to the heme cation species of compound 1 shown in A to generate a radical ion in B. The electron flow toward the oxo-iron would generate the cation shown in (C), leading to the spirolactone product shown in D. In E, an alternate mechanism for the His-Tyr bond formation in HPII is presented that could occur independently of the heme modification reaction. Reprinted with permission of Cambridge University Press from Bravo et al. (93). Fig. 14. A mechanism to explain heme modification in the P. vitcde catalase and possibly E. coli HPII. For simplicity, the phenyl ring of T3rr415 is not shown, and only ring III of the heme and the heme iron are shown. Compound I is an oxyferryl species formed, along with water, in the reaction of one H2O2 with the heme. The iron is in a formal Fe oxidation state, but one oxidation equivalent is delocalized on the heme to create the 0x0-Fe" -heme cation, shown as the starting species, compound I. A water on the proximal side of the heme is added to the heme cation species of compound 1 shown in A to generate a radical ion in B. The electron flow toward the oxo-iron would generate the cation shown in (C), leading to the spirolactone product shown in D. In E, an alternate mechanism for the His-Tyr bond formation in HPII is presented that could occur independently of the heme modification reaction. Reprinted with permission of Cambridge University Press from Bravo et al. (93).
The catalytic mechanism of heme CATs is a two-step reaction. In the first step, interaction between ferriCAT (Fe +) and hydrogen peroxide leads to the heterolytic cleavage of the 0-0 bond in the substrate molecule and oxygen is bound to the 6th valency of the porphyrin iron. In this reaction Compound I (in which formal oxidation state of Fe is +5), a spectroscopically distinct and enzymatically active form of CAT, is formed. Compound I is an oxyferryl species in which one oxidation equivalent is removed from the iron and one from the porphyrin ring to generate a porphyrin rr-cation radical [206] ... [Pg.132]

Once activated, MV-CCP reacts with 1 equiv of H2O2 in a bimolecu-lar reaction, presumably to form compound 0. In YCCP and HRP this species is referred to as compound ES or compound I, respectively, and contains oxyferryl heme and either a porphyrin n -cation radical (HRP) or an amino acid radical (YCCP). However, the presence of an extra reducing equivalent on the second heme in CCP suggests that such an oxidizing radical species close to the active site heme will be very shortlived and readily form compound I (Fig. 10), which is formally Fe(HI) Fe(IV)=0. The bimolecular rate constant for compound I formation is reported to be very close to the diffusion limit (84). [Pg.199]

When 02 reacts with cytochrome c oxidase, it may be bound initially to either the a3 iron or to CuB, but in the peroxy intermediate P it may bind to both atoms. Oxyferryl compound F (Fig. 8-11) as well as radical species, can also be formed by treatment of the oxidized... [Pg.1030]

In Section 3.6, we have described the method to produce unstable species in inert gas matrices by laser-photolysis and simultaneously determine their structures by RR spectroscopy. The example given was oxyferryl(IV) porphyrins produced by laser photolysis of the corresponding oxyiron(III) porphyrins ... [Pg.221]

The EPR and ENDOR spectroscopy was used for studies of catalytic intermediates in native and mutant cytochrome P450cam in cryogenic temperatures (6 and 77K) (Davydov et al., 2001). The ternary complex of camphor, dioxygen, and ferrous-enzyme was irradiated with y-rays to inject the second electron. This process showed that the primary product upon reduction of the complex is the end -on intermediate. This species converts even at cryogenic temperatures to the hydroperoxo-ferriheme form and after brief annealing at a temperature around 200 K, causes camphor to convert to the product. In spite of conclusions derived from x-ray analysis (Schlichtich et al., 2000) no spectroscopic evidence for the buildup of a high-valance oxyferryl/porphyrin rc-cation radical intermediate during the entire catalytic circle has been obtained. [Pg.103]

Most monooxygenases that are ubiquitous in living organisms contain an hemeprotein called cytochrome P450. The active oxygen species involved in the catalytic cycle of these enzymes seems to be an oxyferryl complex of the Fe(V)=0... [Pg.347]


See other pages where Oxyferryl species is mentioned: [Pg.36]    [Pg.775]    [Pg.36]    [Pg.775]    [Pg.21]    [Pg.103]    [Pg.800]    [Pg.1950]    [Pg.2597]    [Pg.104]    [Pg.148]    [Pg.1949]    [Pg.354]    [Pg.8]    [Pg.7]    [Pg.354]   
See also in sourсe #XX -- [ Pg.36 ]




SEARCH



© 2024 chempedia.info