Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidizing radical species

Once activated, MV-CCP reacts with 1 equiv of H2O2 in a bimolecu-lar reaction, presumably to form compound 0. In YCCP and HRP this species is referred to as compound ES or compound I, respectively, and contains oxyferryl heme and either a porphyrin n -cation radical (HRP) or an amino acid radical (YCCP). However, the presence of an extra reducing equivalent on the second heme in CCP suggests that such an oxidizing radical species close to the active site heme will be very shortlived and readily form compound I (Fig. 10), which is formally Fe(HI) Fe(IV)=0. The bimolecular rate constant for compound I formation is reported to be very close to the diffusion limit (84). [Pg.199]

With the objective of oxidizing the fullerene core, radiolysis of any chlorinated hydrocarbon solvent provides the means of forming strongly oxidizing radical species [71]. For example, the radiation-induced ionization of dichloroethane (DCE) yields the short-lived and highly reactive solvent radical cation. In general, the electron affinity of [DCE] + is sufficient to initiate one-electron oxidation of the fullerene moiety (Eq. 6) [72-76]. [Pg.942]

Chain breaking acceptor (CB-A) antioxidants interfere with propagation by oxidizing radical species in a stoichiometric reaction, such as ... [Pg.164]

Fig. 7.6 Possible degradation mechanisms of perfluoro sulfonic acid (PFSAs) involving oxidative radical species... Fig. 7.6 Possible degradation mechanisms of perfluoro sulfonic acid (PFSAs) involving oxidative radical species...
Metal-Catalyzed Oxidation. Trace quantities of transition metal ions catalyze the decomposition of hydroperoxides to radical species and greatiy accelerate the rate of oxidation. Most effective are those metal ions that undergo one-electron transfer reactions, eg, copper, iron, cobalt, and manganese ions (9). The metal catalyst is an active hydroperoxide decomposer in both its higher and its lower oxidation states. In the overall reaction, two molecules of hydroperoxide decompose to peroxy and alkoxy radicals (eq. 5). [Pg.223]

Upon the irradiation the nitrous acid ester 1 decomposes to give nitrous oxide (NO) and an alkoxy radical species 3. The latter further reacts by an intramolecular hydrogen abstraction via a cyclic, six-membered transition state 4 to give an intermediate carbon radical species 5, which then reacts with the nitrous oxide to yield the 3-nitroso alcohol 2 ... [Pg.25]

With a radical-scavenging compound present in the reaction mixture, an alkyl radical species like 5 can be trapped, thus suggesting a fast conversion of the alkoxy radical 3 by intramolecular hydrogen abstraction, followed by a slow intermolecular reaction with nitrous oxide. [Pg.26]

The anodic oxidation of the carboxylate anion 1 of a carboxylate salt to yield an alkane 3 is known as the Kolbe electrolytic synthesis By decarboxylation alkyl radicals 2 are formed, which subsequently can dimerize to an alkane. The initial step is the transfer of an electron from the carboxylate anion 1 to the anode. The carboxyl radical species 4 thus formed decomposes by loss of carbon dioxide. The resulting alkyl radical 2 dimerizes to give the alkane 3 " ... [Pg.183]

The initial step of the coupling reaction is the binding of the carbonyl substrate to the titanium surface, and the transfer of an electron to the carbonyl group. The carbonyl group is reduced to a radical species 3, and the titanium is oxidized. Two such ketyl radicals can dimerize to form a pinacolate-like intermediate 4, that is coordinated to titanium. Cleavage of the C—O bonds leads to formation of an alkene 2 and a titanium oxide 5 ... [Pg.197]

A number of metal chelates containing transition metals in their higher oxidation states are known to decompose by one electron transfer process to generate free radical species, which may initiate graft copolymerization reactions. Different transition metals, such as Zn, Fe, V, Co, Cr, Al, etc., have been used in the preparation of metal acetyl acetonates and other diketonates. Several studies demonstrated earlier that metal acetyl acetonates can be used as initiators for vinyl polymeriza-... [Pg.487]

Mn(III) is able to oxidize many organic substrates via the free radical mechanism [32], The free radical species, generated during oxidation smoothly initiate vinyl polymerization [33-35]. Mn(III) interacts also with polymeric substrates to form effective systems leading to the formation of free radicals. These radicals are able to initiate vinyl polymerization and, consequently, grafting in the presence of vinyl monomers. [Pg.505]

A final class of multifunctional initiators is based on the use a (muUi)functional polymer and a low molecular weight redox agent. Radicals on the polymer chain arc generated from the polymer bound functionality by a redox reaction. Ideally, no free initiating species are formed. The best known of this class are the polyol-redox and related systems. Polymers containing hydroxy or glycol and related functionality are subject to one electron oxidation by species such as ceric ions or periodate (Scheme 7.23).266,267 Substrates such as cellulose,... [Pg.386]

Eisch, Behrooz and Galle196 give compelling evidence for the intervention of radical species in the desulphonylation of certain acetylenic or aryl sulphones with metal alkyls having a lower oxidation potential at the anionic carbon. The primary evidence presented by these workers is that the reaction of 5-hexenylmagnesium chloride outlined in equation (85) gives a mixture of desulphonylation products, in accord with the known behaviour of the 5-hexenyl radical, in which the cyclopentylmethyl radical is also formed. [Pg.959]

A central theme in our approach, which we believe to be different from those of others, is to focus on the changing chemistry associated with higher, middle and lower oxidation state compounds. The chemical stability of radical species and open-shell Werner-type complexes, on the one hand, and the governance of the 18-electron rule, on the other, are presented as consequences of the changing nature of the valence shell in transition-metal species of different oxidation state. [Pg.218]

According to these conclusions, it is possible to propose a catalytic cycle (Fig. 20) involving no radical species, but a copper(I) complex with the classical oxidative addition, nucleophilic substitution and reductive elimination resulting lastly in the arylated nucleophile. [Pg.256]

Consequently, the antioxidant activity of GA in biological systems is still an unresolved issue, and therefore it requires a more direct knowledge of the antioxidant capacity of GA that can be obtained by in vitro experiments against different types of oxidant species. The total antioxidant activity of a compound or substance is associated with several processes that include the scavenging of free radical species (eg. HO, ROO ), ability to quench reactive excited states (triplet excited states and/ or oxygen singlet molecular 1O2), and/or sequester of metal ions (Fe2+, Cu2+) to avoid the formation of HO by Fenton type reactions. In the following sections, we will discuss the in vitro antioxidant capacity of GA for some of these processes. [Pg.11]

The oxidation of polymers is most commonly depicted in terms of the kinetic scheme developed by BoUand [14]. The scheme is summarized in Figure 15.1. The key to the process is the initial formation of a free-radical species. At high temperatures and at large shear forces, it is likely that free-radical formation takes place by cleavage of C-C and C-H bonds. [Pg.465]

A biomimetic oxidation with perfluorinated porphyrin complexes [(F20TPP) FeCl] showed high catalytic activity with secondary alcohols with over 97% yield in all cases [144]. Furthermore, this catalyst is able to oxidize a broad range of alcohols under mild conditions with wCPBA as terminal oxidant. Here, an a-hydroxyalkyl radical species is proposed as central intermediate. [Pg.103]

Strongly acidic vanadium(V) oxidises bromide in a sulphate ion medium . The reaction is first-order in both oxidant and sulphuric acid. The dependence of the rate on bromide ion concentration is complex and a maximum is exhibited at certain acidities. A more satisfactory examination is that of Julian and Waters who employed a perchlorate ion medium and controlled the ionic strength. They used several organic substrates which acted as captors for bromine radical species. The rate of reduction of V(V) is independent of the substrate employed and almost independent of substrate concentration. At a given acidity the kinetics are... [Pg.358]

Catechin-immobilizing polymer particles were prepared by laccase-catalyzed oxidation of catechin in the presence of amine-containing porous polymer particles. The resulting particles showed good scavenging activity toward stable free l,l-diphenyl-2-picryl-hydrazyl radical and 2,2 -azinobis(3-ethylbenzothiazoline-6-sulfonate) radical cation. These particles may be applied for packed column systems to remove radical species such as reactive oxygen closely related to various diseases. [Pg.244]


See other pages where Oxidizing radical species is mentioned: [Pg.308]    [Pg.449]    [Pg.326]    [Pg.156]    [Pg.161]    [Pg.459]    [Pg.1014]    [Pg.308]    [Pg.449]    [Pg.326]    [Pg.156]    [Pg.161]    [Pg.459]    [Pg.1014]    [Pg.641]    [Pg.690]    [Pg.282]    [Pg.488]    [Pg.323]    [Pg.719]    [Pg.173]    [Pg.504]    [Pg.310]    [Pg.197]    [Pg.174]    [Pg.24]    [Pg.27]    [Pg.483]    [Pg.866]    [Pg.127]    [Pg.229]    [Pg.176]    [Pg.216]    [Pg.2]    [Pg.4]   
See also in sourсe #XX -- [ Pg.459 ]




SEARCH



Oxidation radical

Oxidation species

Oxidation, radical species present during

Oxide Radicals

Radical species

Transient radical species intermediates, oxidatively-induced

© 2024 chempedia.info