Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxide surfaces, metals dispersed

XPS results provide some information on surface atomic distributions in various samples. It is realized that all these three elements exist in different oxidation states (Table X). With CuHY or ZnHY, surface metallic dispersion (M/Si values) increased after coking in either M2 or H2 stream but for coked-PtHY sample this variation was insignificant. However, the surface carbon (atom %) was enriched for the samples deactivated in H2 atmosphere as compared with those in N2. [Pg.217]

CatalyticaHy Active Species. The most common catalyticaHy active materials are metals, metal oxides, and metal sulfides. OccasionaHy, these are used in pure form examples are Raney nickel, used for fat hydrogenation, and y-Al O, used for ethanol dehydration. More often the catalyticaHy active component is highly dispersed on the surface of a support and may constitute no more than about 1% of the total catalyst. The main reason for dispersing the catalytic species is the expense. The expensive material must be accessible to reactants, and this requires that most of the catalytic material be present at a surface. This is possible only if the material is dispersed as minute particles, as smaH as 1 nm in diameter and even less. It is not practical to use minute... [Pg.172]

Precious Meta.1 Ca.ta.lysts, Precious metals are deposited throughout the TWC-activated coating layer. Rhodium plays an important role ia the reduction of NO, and is combiaed with platinum and/or palladium for the oxidation of HC and CO. Only a small amount of these expensive materials is used (31) (see Platinum-GROUP metals). The metals are dispersed on the high surface area particles as precious metal solutions, and then reduced to small metal crystals by various techniques. Catalytic reactions occur on the precious metal surfaces. Whereas metal within the crystal caimot directly participate ia the catalytic process, it can play a role when surface metal oxides are influenced through strong metal to support reactions (SMSI) (32,33). Some exhaust gas reactions, for instance the oxidation of alkanes, require larger Pt crystals than other reactions, such as the oxidation of CO (34). [Pg.486]

N. E. Cohen, 13th Symp (Int) Combust (Proc) (1970), 1019—29 CA 76, 61471 (1972) To analyze and explain the mechanism of combustion of powdered metals in contact with a solid oxidizer (AP) with the powdered metal dispersed in solid AP (I), the combustion of various compressed I-Al and I-Mg mixts in N2 under various conditions in a high-pressure window bomb was studied. The regression-rate laws of the mixts at high and low pressures, the pressure limits for deflagration, and the structures of the combustion zone and of the surface were detd. The burning rate of various I-Al mixts, as a function of pressure, I particle size, and mixt ratio was determined by cinematography. The combustion was difficult to achieve... [Pg.938]

Mesoporous carbon materials were prepared using ordered silica templates. The Pt catalysts supported on mesoporous carbons were prepared by an impregnation method for use in the methanol electro-oxidation. The Pt/MC catalysts retained highly dispersed Pt particles on the supports. In the methanol electro-oxidation, the Pt/MC catalysts exhibited better catalytic performance than the Pt/Vulcan catalyst. The enhanced catalytic performance of Pt/MC catalysts resulted from large active metal surface areas. The catalytic performance was in the following order Pt/CMK-1 > Pt/CMK-3 > Pt/Vulcan. It was also revealed that CMK-1 with 3-dimensional pore structure was more favorable for metal dispersion than CMK-3 with 2-dimensional pore arrangement. It is eoncluded that the metal dispersion was a critical factor determining the catalytic performance in the methanol electro-oxidation. [Pg.612]

As we have seen, the net surface charge of a hydrous oxide surface is established by proton transfer reactions and the surface complexation (specific sorption) of metal ions and ligands. As Fig. 3.5 illustrates, the titration curve for a hydrous oxide dispersion in the presence of a coordinatable cation is shifted towards lower pH values (because protons are released as consequence of metal ion binding, S-OH + Me2+ SOMe+ + H+) in such a way as to lower the pH of zero proton condition at the surface. [Pg.54]

CIR-FTIR spectroscopy provides a direct technique for studying in situ hydrous metal oxide surfaces and molecules adsorbed on these surfaces (37). By itself, FTIR spectrometry is a well established technique which offers numerous advantages over dispersive (grating) IR spectrometry (1) improved accuracy in frequency measurements through the use of a HeNe laser (2) simultaneous frequency viewing (3) rapid, repetitive scanning which allows many spectra to be collected in a small time interval (4) miriimal thermal effects from IR beam and (5) no detection of sample IR emissions (38). [Pg.150]

Acidity, 27 284, 285 catalytic performance, 30 121 crystalline titanium silicates, 41 319-320 estimating, 37 166 heteropoly compounds, 41 139-150 ion exchange and, zeolites, 31 5-6 sulfate-supported metal oxides, 37 186-187 surface, monolayer dispersion, 37 34-35 tin-antimony oxide, 30 114-115, 125-1256 Acids, see also specific compounds adsorption of, on oxide surfaces, 25 243-245... [Pg.37]


See other pages where Oxide surfaces, metals dispersed is mentioned: [Pg.148]    [Pg.2702]    [Pg.405]    [Pg.138]    [Pg.503]    [Pg.56]    [Pg.742]    [Pg.4]    [Pg.80]    [Pg.56]    [Pg.610]    [Pg.22]    [Pg.355]    [Pg.363]    [Pg.364]    [Pg.365]    [Pg.571]    [Pg.91]    [Pg.185]    [Pg.102]    [Pg.154]    [Pg.117]    [Pg.56]    [Pg.62]    [Pg.45]    [Pg.89]    [Pg.35]    [Pg.36]    [Pg.14]    [Pg.84]    [Pg.190]    [Pg.184]    [Pg.238]    [Pg.7]    [Pg.141]    [Pg.334]    [Pg.339]    [Pg.357]    [Pg.359]    [Pg.304]    [Pg.183]    [Pg.140]   
See also in sourсe #XX -- [ Pg.460 ]




SEARCH



Dispersed metals

Dispersion surface

Metal dispersion

Metal oxide surfaces

Metal oxide surfaces, oxidation

Surface metallic oxide

© 2024 chempedia.info