Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bonds oxidative cleavage

A reaction characteristic of vicinal diols is their oxidative cleavage on treatment with periodic acid (HIO4) The carbon-carbon bond of the vicinal diol unit is broken and two carbonyl groups result Periodic acid is reduced to iodic acid (HIO3)... [Pg.647]

The diacids for these polymers are prepared via different processes. A2elaic acid [123-99-9] for nylon-6,9 [28757-63-3] is generally produced from naturally occurring fatty acids via oxidative cleavage of a double bond in the 9-position, eg, from oleic acid [112-80-1] ... [Pg.236]

In nature, vitamin A aldehyde is produced by the oxidative cleavage of P-carotene by 15,15 - P-carotene dioxygenase. Alternatively, retinal is produced by oxidative cleavage of P-carotene to P-apo-S -carotenal followed by cleavage at the 15,15 -double bond to vitamin A aldehyde (47). Carotenoid biosynthesis and fermentation have been extensively studied both ia academic as well as ia iadustrial laboratories. On the commercial side, the focus of these iavestigations has been to iacrease fermentation titers by both classical and recombinant means. [Pg.101]

Alkali fusion of oleic acid at about 350°C ia the Varrentrapp reaction causes double-bond isomerization to a conjugated system with the carboxylate group followed by oxidative cleavage to form palmitic acid (75). In contrast, alkaU fusion of riciaoleic acid is the commercial route to sebacic acid [111 -20-6] ... [Pg.86]

FIGURE 5.18 Methods for cleavage of disulfide bonds in proteins, (a) Oxidative cleavage by reaction with performic acid, (b) Reductive cleavage with snlfliydryl compounds. Disulfide bridges can be broken by reduction of the S—S link with snlfliydryl agents such as 2-mercaptoethanol or dithiothreitol. Because reaction between the newly reduced —SH groups to re-establish disulfide bonds is a likelihood, S—S reduction must be followed by —SH modification (1) alkylation with iodoac-etate (ICH,COOH) or (2) modification with 3-bromopropylamine (Br— (CH,)3—NH,). [Pg.132]

The oxidative cleavage of the central carbon-carbon bond in a vicinal diol 1, by reaction with lead tetraacetate or periodic acid, yields two carbonyl compounds 2 and 3 as products. [Pg.137]

Finally, oxidative cleavage of the remaining aryl-silicon bond with lead tetrakis(trifluoroacetate), [Pb(OCOCF3)4]19, furnishes ( )-estrone [( )-1 ] in nearly quantitative yield. [Pg.165]

As inert as the C-25 lactone carbonyl has been during the course of this synthesis, it can serve the role of electrophile in a reaction with a nucleophile. For example, addition of benzyloxymethyl-lithium29 to a cold (-78 °C) solution of 41 in THF, followed by treatment of the intermediate hemiketal with methyl orthoformate under acidic conditions, provides intermediate 42 in 80% overall yield. Reduction of the carbon-bromine bond in 42 with concomitant -elimination of the C-9 ether oxygen is achieved with Zn-Cu couple and sodium iodide at 60 °C in DMF. Under these reaction conditions, it is conceivable that the bromine substituent in 42 is replaced by iodine, after which event reductive elimination occurs. Silylation of the newly formed tertiary hydroxyl group at C-12 with triethylsilyl perchlorate, followed by oxidative cleavage of the olefin with ozone, results in the formation of key intermediate 3 in 85 % yield from 42. [Pg.245]

With the iodine atom in its proper place, provisions for construction of the C9-C10 bond by an aldol reaction could be made (see Scheme 44). To this end, oxidative cleavage of the para-methoxy-benzyl ether in 181 with 2,3-dichloro-5,6-dicyano-l,4-benzoqui-none (DDQ) in CH2CI2-H2O furnishes a primary alcohol that can... [Pg.610]

The next key step, the second dihydroxylation, was deferred until the lactone 82 had been formed from compound 80 (Scheme 20). This tactic would alleviate some of the steric hindrance around the C3-C4 double bond, and would create a cyclic molecule which was predicted to have a greater diastereofacial bias. The lactone can be made by first protecting the diol 80 as the acetonide 81 (88 % yield), followed by oxidative cleavage of the two PMB groups with DDQ (86% yield).43 Dihydroxylation of 82 with the standard Upjohn conditions17 furnishes, not unexpectedly, a quantitative yield of the triol 84 as a single diastereoisomer. The triol 84 is presumably fashioned from the initially formed triol 83 by a spontaneous translactonization (see Scheme 20), an event which proved to be a substantial piece of luck, as it simultaneously freed the C-8 hydroxyl from the lactone and protected the C-3 hydroxyl in the alcohol oxidation state. [Pg.697]

Alkyl-substituted allylmetals 1 usually cover the synthon A. Since oxidative cleavage of the C-C double bond in the products formed can be readily achieved, such reagents are often used as equivalents for the appropriate cnolatc synthons B and C or /1-hydroxycarbonyl anions D. Subsequent hydroboration extends their scope on y-hydroxyalkyl anions E. [Pg.221]

This excellent method of oxidative cleavage (/) of carbon-silicon bonds requires that the silane carry an electronegative substituent (2), such as alkoxy or fluoro. Either hydrogen peroxide or mcpba may be used as oxidant, and the alcohol is produced with retention of configuration (3). Fluoride ion is normally a mandatory additive in what is believed to be a fluoride ion-assisted rearrangement of a silyl peroxide, as shown below ... [Pg.123]

RNA is as suitable (if not more so) than DNA as a cleavage target [37]. In contrast to DNA, RNA is substantially less prone to oxidative cleavage [38] as a consequence of the higher stability of the glycosidic bond in ribonucleotides compared to that in deoxyribonucleotides. On the basis of the properties described in the introductory sections RNA is by contrast, much less stable to hydrolytic cleavage. For this reason the hydrolysis of the phosphate bond in this system can be successfully catalyzed not only by metal ions but also by ammonium ions. [Pg.231]

Figure 4-3. Oxidative cleavage of adjacent polypeptide chains linked by disulfide bonds (shaded) by per-formic acid (left) or reductive cleavage by 3-mercap-toethanol (right) forms two peptides that contain cysteic acid residues or cysteinyl residues, respectively. Figure 4-3. Oxidative cleavage of adjacent polypeptide chains linked by disulfide bonds (shaded) by per-formic acid (left) or reductive cleavage by 3-mercap-toethanol (right) forms two peptides that contain cysteic acid residues or cysteinyl residues, respectively.
As described in the preceding paragraphs, oxidation products of carotenoids can be formed in vitro as a result of their antioxidant or prooxidant actions or after their autoxidation by molecular oxygen. They can also be found in nature, possibly as metabolites of carotenoids. Frequently encountered products are the monoepoxide in 5,6- or 5, 6 -positions and the diepoxide in 5,6 5, 6 positions or rearrangement products creating furanoid cycles in the 5,8 or 5, 8 positions and 5,8 5, 8 positions, respectively. Products like apo-carotenals and apo-carotenones issued from oxidative cleavages are also common oxidation products of carotenoids also found in nature. When the fission occurs on a cyclic bond, the C-40 carbon skeleton is retained and the products are called seco-carotenoids. [Pg.183]


See other pages where Bonds oxidative cleavage is mentioned: [Pg.344]    [Pg.130]    [Pg.519]    [Pg.728]    [Pg.19]    [Pg.428]    [Pg.429]    [Pg.440]    [Pg.441]    [Pg.36]    [Pg.85]    [Pg.88]    [Pg.331]    [Pg.728]    [Pg.13]    [Pg.26]    [Pg.60]    [Pg.85]    [Pg.86]    [Pg.114]    [Pg.193]    [Pg.327]    [Pg.481]    [Pg.506]    [Pg.764]    [Pg.766]    [Pg.778]    [Pg.218]    [Pg.53]    [Pg.1580]    [Pg.470]    [Pg.185]    [Pg.486]    [Pg.486]   
See also in sourсe #XX -- [ Pg.113 ]

See also in sourсe #XX -- [ Pg.285 ]




SEARCH



Oxides bonding

© 2024 chempedia.info