Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation potentials oxide layers

The diagram gives regions of existence, i.e. for a particular combination of pH and redox potential it can be predicted whether it is thennodynamically favourable for iron to be inert (stable) (region A), to actively dissolve (region B) or to fonn an oxide layer (region C). [Pg.2717]

A number of metals, such as copper, cobalt and h on, form a number of oxide layers during oxidation in air. Providing that interfacial thermodynamic equilibrium exists at the boundaries between the various oxide layers, the relative thicknesses of the oxides will depend on die relative diffusion coefficients of the mobile species as well as the oxygen potential gradients across each oxide layer. The flux of ions and electrons is given by Einstein s mobility equation for each diffusing species in each layer... [Pg.253]

The tlrermodynamic activity of nickel in the nickel oxide layer varies from unity in contact with tire metal phase, to 10 in contact with the gaseous atmosphere at 950 K. The sulphur partial pressure as S2(g) is of the order of 10 ° in the gas phase, and about 10 in nickel sulphide in contact with nickel. It therefore appears that the process involves tire uphill pumping of sulphur across this potential gradient. This cannot occur by the counter-migration of oxygen and sulphur since the mobile species in tire oxide is the nickel ion, and the diffusion coefficient aird solubility of sulphur in the oxide are both vety low. [Pg.284]

Certainly a thermodynamically stable oxide layer is more likely to generate passivity. However, the existence of the metastable passive state implies that an oxide him may (and in many cases does) still form in solutions in which the oxides are very soluble. This occurs for example, on nickel, aluminium and stainless steel, although the passive corrosion rate in some systems can be quite high. What is required for passivity is the rapid formation of the oxide him and its slow dissolution, or at least the slow dissolution of metal ions through the him. The potential must, of course be high enough for oxide formation to be thermodynamically possible. With these criteria, it is easily understood that a low passive current density requires a low conductivity of ions (but not necessarily of electrons) within the oxide. [Pg.135]

Mechanistically chromium additions have been shown to significantly enrich (lOX) in the magnetite oxide layer and, it has been suggested that this lowers its solubility. Additions of small amounts of oxygen to the water, increases the metal s potential and promotes the formation of haematite... [Pg.300]

Turning now to the acidic situation, a report on the electrochemical behaviour of platinum exposed to 0-1m sodium bicarbonate containing oxygen up to 3970 kPa and at temperatures of 162 and 238°C is available. Anodic and cathodic polarisation curves and Tafel slopes are presented whilst limiting current densities, exchange current densities and reversible electrode potentials are tabulated. In weak acid and neutral solutions containing chloride ions, the passivity of platinum is always associated with the presence of adsorbed oxygen or oxide layer on the surface In concentrated hydrochloric acid solutions, the possible retardation of dissolution is more likely because of an adsorbed layer of atomic chlorine ... [Pg.945]

Tie has good resistance to sulfuric acid.l l A passivating oxide layer is formed up to a potential of 1.8 V at which point corrosion becomes severe. TiC is also very resistant to sea water, neutral industrial waste waters, and human sweat. Cr7C3 is even more corrosion resistant and is used extensively as a passivation interlayer. [Pg.440]

In addition to effects on the concentration of anions, the redox potential can affect the oxidation state and solubility of the metal ion directly. The most important examples of this are the dissolution of iron and manganese under reducing conditions. The oxidized forms of these elements (Fe(III) and Mn(IV)) form very insoluble oxides and hydroxides, while the reduced forms (Fe(II) and Mn(II)) are orders of magnitude more soluble (in the absence of S( — II)). The oxidation or reduction of the metals, which can occur fairly rapidly at oxic-anoxic interfaces, has an important "domino" effect on the distribution of many other metals in the system due to the importance of iron and manganese oxides in adsorption reactions. In an interesting example of this, it has been suggested that arsenate accumulates in the upper, oxidized layers of some sediments by diffusion of As(III), Fe(II), and Mn(II) from the deeper, reduced zones. In the aerobic zone, the cations are oxidized by oxygen, and precipitate. The solids can then oxidize, as As(III) to As(V), which is subsequently immobilized by sorption onto other Fe or Mn oxyhydroxide particles (Takamatsu et al, 1985). [Pg.390]

Gerischer H (1989) Neglected problems in the pH dependence of the flatband potential of semiconducting oxides and semiconductors covered with oxide layers. Electrochim Acta 34 1005-1009... [Pg.294]

Unlike the cathodic reaction, anodic oxidation (ionization) of molecular hydrogen can be studied for only a few electrode materials, which include the platinum group metals, tungsten carbide, and in alkaline solutions nickel. Other metals either are not sufficiently stable in the appropriate range of potentials or prove to be inactive toward this reaction. For the materials mentioned, it can be realized only over a relatively narrow range of potentials. Adsorbed or phase oxide layers interfering with the reaction form on the surface at positive potentials. Hence, as the polarization is raised, the anodic current will first increase, then decrease (i.e., the electrode becomes passive see Fig. 16.3 in Chapter 16). In the case of nickel and tungsten... [Pg.265]

The oxygen reactions occur at potentials where most metal surfaces are covered by adsorbed or phase oxide layers. This is particularly true for oxygen evolution, which occurs at potentials of 1.5 to 2.2 V (RHE). At these potentials many metals either dissolve or are completely oxidized. In acidic solutions, oxygen evolution can be realized at electrodes of the platinum group metals, the lead dioxide, and the oxides of certain other metals. In alkaline solutions, electrodes of iron group metals can also be used (at these potentials, their surfaces are practically completely oxidized). [Pg.273]

Solid metal electrodes are usually polished mechanically and are sometimes etched with nitric acid or aqua regia. Purification of platinum group metal electrodes is effectively achieved also by means of high-frequency plasma treatment. However, electrochemical preparation of the electrode immediately prior to the measurement is generally most effective. The simplest procedure is to polarize the electrode with a series of cyclic voltammetric pulses in the potential range from the formation of the oxide layer (or from the evolution of molecular oxygen) to the potential of hydrogen evolution (Fig. 5.18F). [Pg.318]


See other pages where Oxidation potentials oxide layers is mentioned: [Pg.2806]    [Pg.510]    [Pg.127]    [Pg.10]    [Pg.254]    [Pg.268]    [Pg.275]    [Pg.282]    [Pg.321]    [Pg.892]    [Pg.134]    [Pg.259]    [Pg.677]    [Pg.1132]    [Pg.1221]    [Pg.1222]    [Pg.272]    [Pg.819]    [Pg.116]    [Pg.213]    [Pg.227]    [Pg.457]    [Pg.472]    [Pg.472]    [Pg.485]    [Pg.487]    [Pg.519]    [Pg.411]    [Pg.390]    [Pg.255]    [Pg.318]    [Pg.266]    [Pg.302]    [Pg.525]    [Pg.83]    [Pg.21]    [Pg.91]    [Pg.92]    [Pg.195]   
See also in sourсe #XX -- [ Pg.286 ]




SEARCH



Oxidants layer

Oxidation potential

Oxide layer

Oxides layered

Oxidizing potential

© 2024 chempedia.info