Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation of photochemically

The oxidation of photochemically formed radicals by onium salts is another way of producing reactive cations indirectly [17] (Scheme 13.5). [Pg.511]

A pioneer group of researchers in UKM has extensively studied utilization of liquid natural rubber (LNR) as a compatibilizer on various NR/polyolefin blends. LNR was produced by photodegradation of NR in toluene and exposure to the ultraviolet for 6 h. The LNR has the same microstructure as NR but with a short polyisoprene chain (of diflerent molecular weight, M )- The Mw of LNR is around 50,000 whereas for NR is 900,000. The formation of new functional groups such as H, C-O and C=0 via oxidation of photochemical sensitization of NR. The presence of the new functional groups is shown in Figure 17.1. The LNR with some active terminals like -OH is... [Pg.513]

Photochemical excitation of a coordination cage was used for inducing oxidation of photochemically inactive alkane [43], This process consists of three steps (1) Encapsulation of an inert guest, (2) photochemical excitation of the cage, and (3) subsequent oxidation of the encapsulated guest (Fig. 9.29). [Pg.281]

Ozone, known for its beneficial role as a protective screen against ultraviolet radiation in the stratosphere, is a major pollutant at low altitudes (from 0 to 2000 m) affecting plants, animals and human beings. Ozone can be formed by a succession of photochemical reactions that preferentially involve hydrocarbons and nitrogen oxides emitted by the different combustion systems such as engines and furnaces. [Pg.261]

A few illustrative examples are the following. Photohydrogenation of acetylene and ethylene occurs on irradiation of Ti02 exposed to the gases, but only if TiOH surface groups are present as a source of hydrogen [319]. The pho-toinduced conversion of CO2 to CH4 in the presence of Ru and Os colloids has been reported [320]. Platinized Ti02 powder shows, in the presence of water, photochemical oxidation of hydrocarbons [321,322]. Some of the postulated reactions are ... [Pg.738]

Write a possible reaction sequence for the photochemical oxidation of aqueous CN ion on Ti02. [Pg.742]

A steroid very closely related structurally to cholesterol is its 7 dehydro derivative 7 Dehydrocholesterol is formed by enzymatic oxidation of cholesterol and has a conju gated diene unit m its B ring 7 Dehydrocholesterol is present m the tissues of the skin where it is transformed to vitamin D3 by a sunlight induced photochemical reaction... [Pg.1096]

Dichromated Resists. The first compositions widely used as photoresists combine a photosensitive dichromate salt (usually ammonium dichromate) with a water-soluble polymer of biologic origin such as gelatin, egg albumin (proteins), or gum arabic (a starch). Later, synthetic polymers such as poly(vinyl alcohol) also were used (11,12). Irradiation with uv light (X in the range of 360—380 nm using, for example, a carbon arc lamp) leads to photoinitiated oxidation of the polymer and reduction of dichromate to Ct(III). The photoinduced chemistry renders exposed areas insoluble in aqueous developing solutions. The photochemical mechanism of dichromate sensitization of PVA (summarized in Fig. 3) has been studied in detail (13). [Pg.115]

In addition to these principal commercial uses of molybdenum catalysts, there is great research interest in molybdenum oxides, often supported on siHca, ie, MoO —Si02, as partial oxidation catalysts for such processes as methane-to-methanol or methane-to-formaldehyde (80). Both O2 and N2O have been used as oxidants, and photochemical activation of the MoO catalyst has been reported (81). The research is driven by the increased use of natural gas as a feedstock for Hquid fuels and chemicals (82). Various heteropolymolybdates (83), MoO.-containing ultrastable Y-zeoHtes (84), and certain mixed metal molybdates, eg, MnMoO Ee2(MoO)2, photoactivated CuMoO, and ZnMoO, have also been studied as partial oxidation catalysts for methane conversion to methanol or formaldehyde (80) and for the oxidation of C-4-hydrocarbons to maleic anhydride (85). Heteropolymolybdates have also been shown to effect ethylene (qv) conversion to acetaldehyde (qv) in a possible replacement for the Wacker process. [Pg.477]

Noncatalytic oxidation of propylene to propylene oxide is also possible. Use of a small amount of aldehyde in the gas-phase oxidation of propylene at 200—350°C and up to 6900 kPa (1000 psi) results in about 44% selectivity to propylene oxide. About 10% conversion of propylene results (214—215). Photochemical oxidation of propylene with oxygen to propylene oxide has been demonstrated in the presence of a-diketone sensitizers and an aprotic solvent (216). [Pg.141]

Nitrogen Oxides. From the combustion of fuels containing only C, H, and O, the usual ak pollutants or emissions of interest are carbon monoxide, unbumed hydrocarbons, and oxides of nitrogen (NO ). The interaction of the last two in the atmosphere produces photochemical smog. NO, the sum of NO and NO2, is formed almost entkely as NO in the products of flames typically 5 or 10% of it is subsequently converted to NO2 at low temperatures. Occasionally, conditions in a combustion system may lead to a much larger fraction of NO2 and the undeskable visibiUty thereof, ie, a very large exhaust plume. [Pg.529]

From N-oxides of aromatic bases oxaziridines were obtained only at very low temperatures, but oxaziridines were often postulated as intermediates in the photoconversion of such N-oxides (Section 5.08.3.1.2). Isolation of the more stable photoisomers of nitrones also causes some problems due to their thermal and photochemical instability leading to acid amides, e.g. (69TL2281), or, by fragmentation, to carbonyl compounds and products of stabilization of nitrenes, e.g. from (260) (69ZN(B)477). [Pg.230]

In this work ion-exchange and gel-permeation chromatography coupled with membrane filtration, photochemical oxidation of organic metal complexes and CL detection were applied to the study of the speciation of cobalt, copper, iron and vanadium in water from the Dnieper reservoirs and some rivers of Ukraine. The role of various groups of organic matters in the complexation of metals is established. [Pg.174]

With the addition of CO caused by photochemical oxidation of methane, a significant flux enters the atmosphere annually, but the principal global contributions are terrestrial, anthropogenic and from atmospheric photolysis of methane. [Pg.23]

This series of reactions is essentially the one described by Wrede and Strack. Pyocyanine can also be prepared by the photochemical oxidation of phenazinc methosulfate. ... [Pg.89]

Fig. 8-3. Relationship between Los Angeles Basin s urban sources of photochemical smog and the San Bernardino Mountains, where ozone damage has occurred to the ponderosa pines. The solid lines are the average daily 1-hr maximum dose of ozone (ppm), )uly-September 1975-1977. Source Adapted from Davidson, A., Ozone trends in the south coast air basin of California, in "Ozone/Oxidants Interaction with the Total Environment.". A ir Pollution Control Association, Pittsburgh, 1979, pp. 433-450. Fig. 8-3. Relationship between Los Angeles Basin s urban sources of photochemical smog and the San Bernardino Mountains, where ozone damage has occurred to the ponderosa pines. The solid lines are the average daily 1-hr maximum dose of ozone (ppm), )uly-September 1975-1977. Source Adapted from Davidson, A., Ozone trends in the south coast air basin of California, in "Ozone/Oxidants Interaction with the Total Environment.". A ir Pollution Control Association, Pittsburgh, 1979, pp. 433-450.
Reaction (12-9) shows the photochemical dissodation of NO2. Reaction (12-10) shows the formation of ozone from the combination of O and molecular O2 where M is any third-body molecule (principally N2 and O2 in the atmosphere). Reaction (12-11) shows the oxidation of NO by O3 to form NO2 and molecular oxygen. These three reactions represent a cyclic pathway (Fig. 12-4) driven by photons represented by hv. Throughout the daytime period, the flux of solar radiation changes with the movement of the sun. However, over short time periods (—10 min) the flux may be considered constant, in which case the rate of reaction (12-9) may be expressed as... [Pg.172]

The tools available for site selection include climatological data, topography, population data, emission inventory data, and diffusion modeling. Climatological data are useful in relating meteorology to emission patterns. For example, elevated levels of photochemical oxidant are generally related... [Pg.217]


See other pages where Oxidation of photochemically is mentioned: [Pg.413]    [Pg.4]    [Pg.413]    [Pg.428]    [Pg.4]    [Pg.413]    [Pg.4]    [Pg.413]    [Pg.428]    [Pg.4]    [Pg.146]    [Pg.239]    [Pg.289]    [Pg.728]    [Pg.7]    [Pg.308]    [Pg.421]    [Pg.311]    [Pg.179]    [Pg.327]    [Pg.122]    [Pg.487]    [Pg.162]    [Pg.295]    [Pg.150]    [Pg.126]    [Pg.2178]    [Pg.186]    [Pg.84]    [Pg.36]    [Pg.119]    [Pg.133]    [Pg.166]    [Pg.176]   


SEARCH



Oxidation photochemical

Photochemical oxidants

© 2024 chempedia.info