Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation equilibrium reaction

Several types of reactions are commonly used in analytical procedures, either in preparing samples for analysis or during the analysis itself. The most important of these are precipitation reactions, acid-base reactions, complexation reactions, and oxidation-reduction reactions. In this section we review these reactions and their equilibrium constant expressions. [Pg.139]

It is now possible to calculate the equilibrium constants of oxidation-reduction reactions, and thus to determine whether such reactions can find application in quantitative analysis. Consider first the simple reaction ... [Pg.68]

Table 9.3 can be used to calculate the point of equilibrium in an oxidation-reduction reaction. [Pg.486]

A production process has evolved from this original work, and is presently used for extracting americium from kilogram amounts of plutonium metal. This process is based upon equilibrium partitioning (by oxidation-reduction reactions) of americium and plutonium between the molten chloride salt and the molten plutonium phase. The chemistry of this process is indicated by the following reactions ... [Pg.385]

The Oppenauer oxidation makes use of ketones (typically acetone) or alkenes as hydrogen acceptors and this absence of a strong oxidising agent allows to overcome some potential NHC oxidative instability. Reactions consist of an equilibrium between an alcohol and its oxidised form (Scheme 10.9). [Pg.244]

Analytical methods based upon oxidation/reduction reactions include oxidation/reduction titrimetry, potentiometry, coulometry, electrogravimetry and voltammetry. Faradaic oxidation/reduction equilibria are conveniently studied by measuring the potentials of electrochemical cells in which the two half-reactions making up the equilibrium are participants. Electrochemical cells, which are galvanic or electrolytic, reversible or irreversible, consist of two conductors called electrodes, each of which is immersed in an electrolyte solution. In most of the cells, the two electrodes are different and must be separated (by a salt bridge) to avoid direct reaction between the reactants. [Pg.666]

Oxidation-reduction reactions may affect the mobility of metal ions by changing the oxidation state. The environmental factors of pH and Eh (oxidation-reduction potential) strongly affect all the processes discussed above. For example, the type and number of molecular and ionic species of metals change with a change in pH (see Figures 20.5-20.7). A number of metals and nonmetals (As, Be, Cr, Cu, Fe, Ni, Se, V, Zn) are more mobile under anaerobic conditions than aerobic conditions, all other factors being equal.104 Additionally, the high salinity of deep-well injection zones increases the complexity of the equilibrium chemistry of heavy metals.106... [Pg.820]

The constraint of thermodynamic equilibrium for the butene dehydrogenation reaction is effectively removed since hydrogen is converted to water by oxidation. Equilibrium yields then approach 100% over the complete temperature and partial pressure range of interest. [Pg.538]

An important aspect of hydrogen transfer equilibrium reactions is their application to a variety of oxidative transformations of alcohols to aldehydes and ketones using ruthenium catalysts.72 An extension of these studies is the aerobic oxidation of alcohols performed with a catalytic amount of hydrogen acceptor under 02 atmosphere by a multistep electron-transfer process.132-134... [Pg.93]

A redox reaction is a special case of the equilibrium reaction of A + B in Equation 13.1 B is now a reducible group in a biomolecule with an EPR spectrum either in its oxidized or in its reduced state (or both), and A is now an electron or a pair of electrons, that is, reducing equivalents provided by a natural redox partner (a reductive substrate, a coenzyme such as NADH, a protein partner such as cytochrome c), or by a chemical reductant (dithionite), or even by a solid electrode ... [Pg.215]

Howard and Ingold studied this equilibrium reaction in experiments on the oxidation of tetralin and 9,10—dihydroanthracene in the presence of specially added triphenylmethyl hydroperoxide[41]. They estimated the equilibrium constant K to be equal to 60 atm-1 (8 x 103 L mol-1, 303 K). This value is close to T=25atm-1 at 300 K (A/7=38kJ mol-1), which was found in the solid crystal lattice permeable to dioxygen [84], The reversible addition of dioxygen to the diphenylmethyl radical absorbed on MFI zeolite was evidenced and studied recently by the EPR technique [85],... [Pg.69]

PINO possesses a high reactivity in the reaction with the C—H bond of the hydrocarbon. Hence, the substitution of peroxyl radicals to nitroxyl radicals accelerates the chain reaction of oxidation. The accumulation of hydroperoxide in the oxidized hydrocarbon should decrease the oxidation rate because of the equilibrium reaction. [Pg.238]

In real systems (hydrocarbon-02-catalyst), various oxidation products, such as alcohols, aldehydes, ketones, bifunctional compounds, are formed in the course of oxidation. Many of them readily react with ion-oxidants in oxidative reactions. Therefore, radicals are generated via several routes in the developed oxidative process, and the ratio of rates of these processes changes with the development of the process [5], The products of hydrocarbon oxidation interact with the catalyst and change the ligand sphere around the transition metal ion. This phenomenon was studied for the decomposition of sec-decyl hydroperoxide to free radicals catalyzed by cupric stearate in the presence of alcohol, ketone, and carbon acid [70-74], The addition of all these compounds was found to lower the effective rate constant of catalytic hydroperoxide decomposition. The experimental data are in agreement with the following scheme of the parallel equilibrium reactions with the formation of Cu-hydroperoxide complexes with a lower activity. [Pg.393]

The following consequences of the equilibrium reactions were supposed as predecessors of the final step of S(IV) oxidation by protonated peracid [25]. [Pg.450]

The synergistic action of a phenol and aromatic amine mixture on hydrocarbon oxidation was found by Karpukhina et al. [16]. A synergistic effect of binary mixtures of some phenols and aromatic amines in oxidizing hydrocarbon is related to the interaction of inhibitors and their radicals [16-26]. In the case of a combined addition of phenyl-A-2-naphthylamine and 2,6-bis(l,l-dimethylethyl)phenol to oxidizing ethylbenzene (v, = const, 343 K), the consumption of amine begins only after the phenol has been exhausted [16], in spite of the fact that peroxyl radicals interact with amine more rapidly than with phenol (7c7 (amine) = 1.3 x 105 and /c7 (phenol) = 1.3 x 104 L mol 1 s respectively 333 K). This phenomenon can be explained in terms of the fast equilibrium reaction [27-30] ... [Pg.623]

The Ge(TMTAA) complex and the well known Sn(TMTAA) complex undergo facile oxidative addition reactions and reverse ylide formation with Mel and C6F5I because of the reactive M(II) (M = Sn, Ge) lone pair of electrons. In case of the oxidation with Mel it was assumed that, in solution, an ionic-covalent equilibrium exists (equation 48)95. [Pg.555]

The equilibrium between a metal and an oxide in a C0-C02 atmosphere can then be obtained by combining the formation reaction of the oxide with reaction (4.53). As an example the equilibrium between Co, 02 and CoO combined with reaction (4.53) gives... [Pg.120]

All hydrogen transfer reactions are equilibrium reactions. Consequently, both a reduction and an oxidation can be catalyzed under similar conditions. The balance of the reaction is determined by the thermodynamic stabilities of the spe-... [Pg.587]

Since transfer hydrogenation reactions of carbonyls are always equilibrium reactions, it is possible to perform both a reduction and an oxidation of a substrate simultaneously. In this way, these reactions can be utilized for both racemizations and epimerizations. [Pg.612]

Material balances can be written for moieties which are conserved during the reaction, such as the atoms of a particular element or the total charge, or for reactant or product species if the stoichiometry is unambiguous. Oxidation-reduction reactions may be particularly troublesome. In the following situation, for example, one cannot write a material balance relating protons to water molecules. Consider the oxidation of O2 to H2O and the equilibrium dissociation of I O. [Pg.747]

Electronic ligand effects are highly predictable in oxidative addition reactions a-donors strongly promote the formation of high-valence states and thus oxidative additions, e.g. alkylphosphines. Likewise, complexation of halides to palladium(O) increases the electron density and facilitates oxidative addition [11], Phosphites and carbon monoxide, on the other hand, reduce the electron density on the metal and thus the oxidative addition is slower or may not occur at all, because the equilibrium shifts from the high to the low oxidation state. In section 2.5 more details will be disclosed. [Pg.37]

Concern about emissions from power plant sources has raised the level of interest in certain products whose concentrations are much less than 1%, even though such concentrations do not affect the temperature even in a minute way. The major pollutant of concern in this regard is nitric oxide (NO). To make an estimate of the amount of NO found in a system at equilibrium, one would use the equilibrium reaction of formation of NO... [Pg.18]

There existed oxidation-reduction reactions with the same reaction speed on the sulphide mineral surface in water. One is the self-corrosion of sulphide mineral. Another is the reduction of oxygen. If the equilibrium potential for the anodic reaction and the cathodic reaction are, respectively, E and, and the mineral electrode potential is E, the relationship among them is as follows ... [Pg.168]

The effect of solution chemistry on the speciation of the organic contaminant 1-naphtol (1-hydroxynaphthalene) and its complexatiom with humic acid is reported by Karthikeyan and Chorover (2000). The complexation of 1-naphtol with humic acid (HA) was studied during seven days of contact, as a function of pH (4 to 11), ionic strength (0.001 and 0.1 M LiCl), and dissolved concentration (DO of 0 and 8 mg L ) using fluorescence, UV absorbance, and equilibrium dialysis techniques. In a LiCl solution, even in the absence of HA, oxidative transformation of 1-naphtol mediated by was observed. In addition, the presence of humic acid in solution, in the absence of DO, was found to promote 1-naphtol oxidation. These reactions are affected by the solution chemistry (pH, ionic strength, and cation composition). [Pg.344]


See other pages where Oxidation equilibrium reaction is mentioned: [Pg.67]    [Pg.69]    [Pg.91]    [Pg.391]    [Pg.174]    [Pg.249]    [Pg.247]    [Pg.25]    [Pg.369]    [Pg.1021]    [Pg.83]    [Pg.69]    [Pg.172]    [Pg.180]    [Pg.98]    [Pg.209]    [Pg.342]    [Pg.163]    [Pg.131]    [Pg.381]    [Pg.57]    [Pg.93]    [Pg.66]    [Pg.89]    [Pg.94]   
See also in sourсe #XX -- [ Pg.196 ]




SEARCH



Equilibrium constant of oxidation-reduction reactions

Equilibrium potential methanol oxidation reaction

Oxidation-reduction reactions equilibrium constants

Oxidation/reduction reactions equilibria

Redox equilibria oxidation half-reactions

Sulfur dioxide oxidation reactors reaction equilibria

© 2024 chempedia.info