Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation addition, example

The interaction of cyclic sulfur imides with metal centres involves adduct formation or oxidative addition. Examples of the former include the formation of [M(S4N4H4)(C0)5] (70, M=Cr, W) and (S4N4H4)2 AgC104. By contrast, the reaction of 69 with [Pt(PPh3)4] gives [Pt(PPh3)2(S2N2)]. Monomeric... [Pg.253]

Most metal-boryl complexes have been synthesized by salt elimination or oxidative addition. Examples of these reactions are shown below. Ottier less common routes to metal-boryl complexes include transmetaUation of a boryl group from one transition metal to another and reactions of boranes with metal-olefin complexes. Boryl complexes have also been generated as intermediates in catalytic processes by "transmetaUation" of a metal halide with a diboron reagent. ... [Pg.188]

Organic compounds M—R and hydrides M—H of main group metals such as Mg, Zn, B, Al, Sn, SI, and Hg react with A—Pd—X complexes formed by oxidative addition, and an organic group or hydride is transferred to Pd by exchange reaction of X with R or H. In other words, the alkylation of Pd takes place (eq. 9). A driving force of the reaction, which is called transmetallation, is ascribed to the difference in the electronegativities of two metals. A typical example is the phenylation of phenylpalladium iodide with phenyltributyltin to form diphenylpalladium (16). [Pg.8]

As a typical example, the catalytic reaction of iodobenzene with methyl acrylate to afford methyl cinnamate (18) is explained by the sequences illustrated for the oxidative addition, insertion, and /3-elimination reactions. [Pg.9]

Oxidative addition of alkyl halides to Pd(0) is slow. Furthermore, alkyl-Pd complexes, formed by the oxidative addition of alkyl halides, undergo facile elimination of /3-hydrogen and the reaction stops at this stage without undergoing insertion or transmetallation. Although not many examples are available, alkynyl iodides react with Pd(0) to form alkynylpalladium complexes. [Pg.127]

Usually, iodides and bromides are used for the carbonylation, and chlorides are inert. I lowever, oxidative addition of aryl chlorides can be facilitated by use of bidcntatc phosphine, which forms a six-membered chelate structure and increa.scs (he electron density of Pd. For example, benzoate is prepared by the carbonylation of chlorobenzene using bis(diisopropylphosphino)propane (dippp) (456) as a ligand at 150 [308]. The use of tricyclohexylphosphine for the carbonylation of neat aryl chlorides in aqueous KOH under biphasic conditions is also recommended[309,310]. [Pg.190]

The acylpalladium complex formed from acyl halides undergoes intramolecular alkene insertion. 2,5-Hexadienoyl chloride (894) is converted into phenol in its attempted Rosenmund reduction[759]. The reaction is explained by the oxidative addition, intramolecular alkene insertion to generate 895, and / -elimination. Chloroformate will be a useful compound for the preparation of a, /3-unsaturated esters if its oxidative addition and alkene insertion are possible. An intramolecular version is known, namely homoallylic chloroformates are converted into a-methylene-7-butyrolactones in moderate yields[760]. As another example, the homoallylic chloroformamide 896 is converted into the q-methylene- -butyrolactams 897 and 898[761]. An intermolecular version of alkene insertion into acyl chlorides is known only with bridgehead acid chlorides. Adamantanecarbonyl chloride (899) reacts with acrylonitrile to give the unsaturated ketone 900[762],... [Pg.260]

The best procedures for 3-vinylation or 3-arylation of the indole ring involve palladium intermediates. Vinylations can be done by Heck reactions starting with 3-halo or 3-sulfonyloxyindoles. Under the standard conditions the active catalyst is a Pd(0) species which reacts with the indole by oxidative addition. A major con.sideration is the stability of the 3-halo or 3-sulfonyloxyindoles and usually an EW substituent is required on nitrogen. The range of alkenes which have been used successfully is quite broad and includes examples with both ER and EW substituents. Examples are given in Table 11.3. An alkene which has received special attention is methyl a-acetamidoacrylate which is useful for introduction of the tryptophan side-chain. This reaction will be discussed further in Chapter 13. [Pg.109]

Molten cryohte dissolves many salts and oxides, forming solutions of melting point lower than the components. Figure 1 combines the melting point diagrams for cryolite—A1F. and for cryohte—NaF. Cryohte systems ate of great importance in the HaH-Heroult electrolysis process for the manufacture of aluminum (see Aluminumand ALUMINUM alloys). Table 5 Hsts the additional examples of cryohte as a component in minimum melting compositions. [Pg.143]

An additional curious feature of alkylaromatic oxidation is that, under conditions where the initial attack involves electron transfer, the relative rate of attack on different alkyl groups attached to the same aromatic ring is quite different from that observed in alkane oxidation. For example, the oxidation of -cymene can lead to high yields of -isopropylbenzoic acid (2,205,297,298). [Pg.345]

Oxidation—Reduction. Redox or oxidation—reduction reactions are often governed by the hard—soft base rule. For example, a metal in a low oxidation state (relatively soft) can be oxidized more easily if surrounded by hard ligands or a hard solvent. Metals tend toward hard-acid behavior on oxidation. Redox rates are often limited by substitution rates of the reactant so that direct electron transfer can occur (16). If substitution is very slow, an outer sphere or tunneling reaction may occur. One-electron transfers are normally favored over multielectron processes, especially when three or more species must aggregate prior to reaction. However, oxidative addition... [Pg.170]

Enzyme Sta.bihty, Loss of enzyme-catalytic activity may be caused by physical denaturation, eg, high temperature, drying/freezing, etc or by chemical denaturation, eg, acidic or alkaline hydrolysis, proteolysis, oxidation, denaturants such as surfactants or solvents, etc. pH has a strong influence on enzyme stabiHty, and must be adjusted to a range suitable for the particular enzyme. If the enzyme is not sufficiendy stable in aqueous solution, it can be stabilized by certain additives a comprehensive treatment with additional examples is available (27). [Pg.290]

An effect which is frequently encountered in oxide catalysts is that of promoters on the activity. An example of this is the small addition of lidrium oxide, Li20 which promotes, or increases, the catalytic activity of dre alkaline earth oxide BaO. Although little is known about the exact role of lithium on the surface structure of BaO, it would seem plausible that this effect is due to the introduction of more oxygen vacancies on the surface. This effect is well known in the chemistry of solid oxides. For example, the addition of lithium oxide to nickel oxide, in which a solid solution is formed, causes an increase in the concentration of dre major point defect which is the Ni + ion. Since the valency of dre cation in dre alkaline earth oxides can only take the value two the incorporation of lithium oxide in solid solution can only lead to oxygen vacaircy formation. Schematic equations for the two processes are... [Pg.141]

The coordination chemistry of NO is often compared to that of CO but, whereas carbonyls are frequently prepared by reactions involving CO at high pressures and temperatures, this route is less viable for nitrosyls because of the thermodynamic instability of NO and its propensity to disproportionate or decompose under such conditions (p. 446). Nitrosyl complexes can sometimes be made by transformations involving pre-existing NO complexes, e.g. by ligand replacement, oxidative addition, reductive elimination or condensation reactions (reductive, thermal or photolytic). Typical examples are ... [Pg.448]

The aforementioned reaction is an example where even quinolinyl chloride is a good substrate for the oxidative addition to palladium(O) if the chlorine atom is at the activated position (a or 5). [Pg.12]

The ease of formation of the carbene depends on the nucleophilicity of the anion associated with the imidazolium. For example, when Pd(OAc)2 is heated in the presence of [BMIM][Br], the formation of a mixture of Pd imidazolylidene complexes occurs. Palladium complexes have been shown to be active and stable catalysts for Heck and other C-C coupling reactions [34]. The highest activity and stability of palladium is observed in the ionic liquid [BMIM][Brj. Carbene complexes can be formed not only by deprotonation of the imidazolium cation but also by direct oxidative addition to metal(O) (Scheme 5.3-3). These heterocyclic carbene ligands can be functionalized with polar groups in order to increase their affinity for ionic liquids. While their donor properties can be compared to those of donor phosphines, they have the advantage over phosphines of being stable toward oxidation. [Pg.269]

Anti-oxidants are the most extensively used additives and will be found in oils and greases which are expected to operate for considerable periods or under conditions that would promote oxidation. Typical examples are crankcase oils and bearing greases. [Pg.847]

For example, Piers and Marais demonstrated that keto iodo alkene 32 can be converted to bicyclic keto alkene 35 in one pot21 (see Scheme 7). In this interesting methylenecyclopentane annulation method, it is presumed that intermediate 33, produced by sequential oxidative addition and deprotonation reactions, undergoes conver-... [Pg.573]

Relatively few examples are known which utilize an oxidative addition reaction of metal hydrides to necessarily low valent silicon compounds. Seyfert s hexame-thylsilirane (31) could be used as a source of dimethylsilylene to perform an... [Pg.15]

NITRILE OXIDES. Nitrile oxides are a well known class of compds represented by R.C N- 0, and are usually prepd by treating hydroxamic acid chlorides with a mild alkali, thus eliminating HQ (Ref 2). Wieland (Refs 1 3) was responsible for the first isolation of free nitrile oxides. These compds are somewhat unstable, showing a marked tendency to dimerize to (he corresponding furoxanes (1,3-dipolar addition) (Refs 2 3). The nitrile oxides add to a considerable number of carbenes, as benzonitrUe oxide (for example) to a large number of olefins in ether at 20° (Ref 3)... [Pg.288]

Carbon-carbon bond formation reactions and the CH activation of methane are another example where NHC complexes have been used successfully in catalytic applications. Palladium-catalysed reactions include Heck-type reactions, especially the Mizoroki-Heck reaction itself [171-175], and various cross-coupling reactions [176-182]. They have also been found useful for related reactions like the Sonogashira coupling [183-185] or the Buchwald-Hartwig amination [186-189]. The reactions are similar concerning the first step of the catalytic cycle, the oxidative addition of aryl halides to palladium(O) species. This is facilitated by electron-donating substituents and therefore the development of highly active catalysts has focussed on NHC complexes. [Pg.14]

Palladium(II) complexes provide convenient access into this class of catalysts. Some examples of complexes which have been found to be successful catalysts are shown in Scheme 11. They were able to get reasonable turnover numbers in the Heck reaction of aryl bromides and even aryl chlorides [22,190-195]. Mechanistic studies concentrated on the Heck reaction [195] or separated steps like the oxidative addition and reductive elimination [196-199]. Computational studies by DFT calculations indicated that the mechanism for NHC complexes is most likely the same as that for phosphine ligands [169], but also in this case there is a need for more data before a definitive answer can be given on the mechanism. [Pg.15]

The [3S+1C] cycloaddition reaction with Fischer carbene complexes is a very unusual reaction pathway. In fact, only one example has been reported. This process involves the insertion of alkyl-derived chromium carbene complexes into the carbon-carbon a-bond of diphenylcyclopropenone to generate cyclobutenone derivatives [41] (Scheme 13). The mechanism of this transformation involves a CO dissociation followed by oxidative addition into the cyclopropenone carbon-carbon a-bond, affording a metalacyclopentenone derivative which undergoes reductive elimination to produce the final cyclobutenone derivatives. [Pg.71]

As a final example in this section, a contribution by Grubbs et al. is discussed. The chloride-free ruthenium hydride complex [RuH2(H2)2(PCy3)2] (37) is believed to react, in the presence of alkenes, to form an unidentified ruthenium(O) species which undergoes oxidative additions with dihalo compounds, e.g., 38, to give the corresponding ruthenium carbene complex 9 (Eq. 4) [20]. [Pg.233]

Other sources of Ru(0) can also be used for this synthesis. For example, it was recently demonstrated that [Ru(arene)(diene)] complexes such as 39 undergo double oxidative addition of heterosubstituted dihalo compounds 40 in the presence of phosphine ligands (Eq. 5) [21]. [Pg.233]

Dichromate oxidation of secondary alcohols produces ketones in good yield, with little additional oxidation. For example, CH,CH2CH(OH)CH3 can be oxidized to CH CH2COCH3. The difference between the ease of oxidation of aldehydes and that of ketones is used to distinguish them. Aldehydes can reduce silver ions to form a silver mirror—a coating of silver on test-tube walls—with Tollens reagent, a solution of Ag1" ions in aqueous ammonia (Fig. 19.3) ... [Pg.877]

Gold in the oxidation state +1 also tends to form dinuclear complexes with bridging amidinate ligands. A typical example is Au2[HC(NC6H3Me2-2,6)2]2 (cf. Section Oxidative addition of iodomethane to the dinuclear gold(I)... [Pg.288]


See other pages where Oxidation addition, example is mentioned: [Pg.133]    [Pg.133]    [Pg.6]    [Pg.226]    [Pg.238]    [Pg.278]    [Pg.181]    [Pg.183]    [Pg.245]    [Pg.248]    [Pg.170]    [Pg.490]    [Pg.115]    [Pg.145]    [Pg.219]    [Pg.262]    [Pg.494]    [Pg.839]    [Pg.120]    [Pg.267]    [Pg.332]    [Pg.319]    [Pg.1043]   
See also in sourсe #XX -- [ Pg.234 ]




SEARCH



Additional examples

Oxidative addition example

© 2024 chempedia.info