Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxazoline aldehyde

Reaction between D-Cys and an oxazoline aldehyde, prepared from l-Phe gave the bicyclic compound 83 [92H(34)903], A derivative of the same system was obtained from penicillamine with a functionalized AA (88CC1128). [Pg.45]

A note of warning both MOM acetals and methyl ethers ortho to electron-withdrawing groups—particularly oxazolines, aldehydes, imines and amides—are susceptible to nucleophilic aromatic substitution reactions involving loss of the alkoxy substituent ... [Pg.535]

Murakami and Taguchi utilized a diastereoselective Grignard addition to a substituted-chiral oxazoline aldehyde 524 (Scheme 8.170) in an improved stereoselective synthesis of D-n7 o-phytosphingosine. The good stereoselectivity observed for 525 can be rationalized by a Felkin-Ahn transition state model although a chelation control mechanism could not be mled out. [Pg.477]

The high reactivity is also understandable from the mild reaction conditions under which many cyclometalation reactions proceed with many kinds of metal elements, such as Ti, Fe, Ru, Os, Rh, Ir, Ni, Pd, Pt, B, and Cu, and with many kinds of substrates, such as amines, imines, 2-phenylpyridines, benzo[/ ]quinones, quinolines, diarylpyridines, naphthyridines, azobenzenes, oxazolines, aldehydes, ketones, amides, phosphines, phosphites, and alkyl sulfides, as shown in Figs. 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, and 5.9. [Pg.34]

The photochemical addition of azirines to the carbonyl group of aldehydes, ketones, and esters is also completely regiospecific (77H(6)143). Besides the formation of the isomeric oxazolines (50) from (39) and ethyl cyanoformate, there is also formed the imidazole (51) from addition to C=N in the expected regioselective manner. Thioesters lead to thiazolines (52), while isocyanates and ketenes produce heterocycles (53). [Pg.56]

Chiral oxazolines developed by Albert I. Meyers and coworkers have been employed as activating groups and/or chiral auxiliaries in nucleophilic addition and substitution reactions that lead to the asymmetric construction of carbon-carbon bonds. For example, metalation of chiral oxazoline 1 followed by alkylation and hydrolysis affords enantioenriched carboxylic acid 2. Enantioenriched dihydronaphthalenes are produced via addition of alkyllithium reagents to 1-naphthyloxazoline 3 followed by alkylation of the resulting anion with an alkyl halide to give 4, which is subjected to reductive cleavage of the oxazoline moiety to yield aldehyde 5. Chiral oxazolines have also found numerous applications as ligands in asymmetric catalysis these applications have been recently reviewed, and are not discussed in this chapter. ... [Pg.237]

The first use of chiral oxazolines as activating groups for nucleophilic additions to arenes was described by Meyers in 1984. " Reaction of naphthyloxazoline 3 with phenyllithium followed by alkylation of the resulting anion with iodomethane afforded dihydronaphthalene 10 in 99% yield as an 83 17 mixture of separable diastereomers. Reductive cleavage of 10 by sequential treatment with methyl fluorosulfonate, NaBKi, and aqueous oxalic acid afforded the corresponding enantiopure aldehyde 11 in 88% yield. [Pg.238]

Variations and Improvements on Alkylations of Chiral OxazoUnes Metalated chiral oxazolines can be trapped with a variety of different electrophiles including alkyl halides, aldehydes,and epoxides to afford useful products. For example, treatment of oxazoline 20 with -BuLi followed by addition of ethylene oxide and chlorotrimethylsilane yields silyl ether 21. A second metalation/alkylation followed by acidic hydrolysis provides chiral lactone 22 in 54% yield and 86% ee. A similar... [Pg.240]

Meyers has demonstrated that chiral oxazolines derived from valine or rert-leucine are also effective auxiliaries for asymmetric additions to naphthalene. These chiral oxazolines (39 and 40) are more readily available than the methoxymethyl substituted compounds (3) described above but provide comparable yields and stereoselectivities in the tandem alkylation reactions. For example, addition of -butyllithium to naphthyl oxazoline 39 followed by treatment of the resulting anion with iodomethane afforded 41 in 99% yield as a 99 1 mixture of diastereomers. The identical transformation of valine derived substrate 40 led to a 97% yield of 42 with 94% de. As described above, sequential treatment of the oxazoline products 41 and 42 with MeOTf, NaBKi and aqueous oxalic acid afforded aldehydes 43 in > 98% ee and 90% ee, respectively. These experiments demonstrate that a chelating (methoxymethyl) group is not necessary for reactions to proceed with high asymmetric induction. [Pg.242]

When the reaction is run with potassium fert-butoxide in THF at -5°C, one obtains (after hydrolysis) the normal Knoevenagel product (32), except that the isocyano group has been hydrated (16-65). With the same base but with DME as solvent the product is the nitrile (33). When the ketone is treated with 31 and thallium(I) ethoxide in a 4 1 mixture of absolute ethanol and DME at room temperature, the product is a 4-ethoxy-2-oxazoline (34). Since 33 can be hydrolyzed to a carboxylic acid and 34 to an a-hydroxy aldehyde, this versatile reaction provides a means for achieving the conversion of RCOR to RCHR COOH, RCHR CN, or RCR (OH)CHO. The conversions to RCHR COOH and to RCHR CN have also been carried out with certain aldehydes (R = H). [Pg.1227]

The aziridine-2-carboxaldehyde 56 can also serve as synthon for the synthesis of sphingosines, which are important biomembrane constituents [64]. One possible route involves the addition of an alanate to the aldehyde. In a later stage of this synthetic plan the aziridine can be opened, either via the intermediacy of an oxazoline or directly with dilute acid. Unfortunately, the reaction of aldehyde 56 with a vinylalanate has a poor diastereoselectivity of 3 2. Therefore, an alternative approach was considered, namely one involving the addition of a vinylzinc reagent to the aldehyde thereby employing our N-tritylaziridinediphenyl-methanol 51 as the chiral catalyst. Gratifyingly, only one diastereomer was obtained. Reductive removal of the trityl function, acetylation of the hydroxy... [Pg.119]

In addition, Rowlands has involved chiral sulfoxide-containing ligands for the catalytic addition of McsSiCN to aldehydes. " The ligand structure was based on a phenolic oxazoline scaffold with introduction of the sulfur substituent via cysteine derivatives. The best enantioselectivities of up to 61% ee were obtained with the bulkiest tert-butyl substituted ligand (Scheme 10.42). The effect of the sulfoxide configuration was studied, showing that the use of... [Pg.328]

Entry 9 uses the oxaborazolidine catalysts discussed on p. 505 with 2-bromopropenal as the dienophile. The aldehyde adopts the exo position in each case, which is consistent with the proposed TS model. Entry 10 illustrates the use of a cationic oxaborazolidine catalyst. The chirality is derived from trans-1,2-diaminocyclohcxanc. Entry 12 shows the use of a TADDOL catalyst in the construction of the steroid skeleton. Entry 13 is an intramolecular D-A reaction catalyzed by a Cu-Ws-oxazoline. Entries 14 and 15 show the use of the oxazaborolidinone catalyst with more complex dienes. [Pg.518]

Entry 10 was used in conjunction with dihydroxylation in the enantiospecific synthesis of polyols. Entry 11 illustrates the use of SnCl2 with a protected polypropionate. Entries 12 and 13 result in the formation of lactones, after MgBr2-catalyzed additions to heterocyclic aldehyde having ester substituents. The stereochemistry of both of these reactions is consistent with approach to a chelate involving the aldehyde oxygen and oxazoline oxygen. [Pg.850]

The photocycloaddition of aliphatic and aromatic aldehydes with 2,4,5-trimethyloxazole (131) gave bicyclic oxetanes 132 in almost quantitative yields hydrolitic cleavage led selectively to erytro a-amino-P-hydroxy methyl ketones 133 <00CC589>. The oxazolium salt 134 was converted to the azomethine ylide 136 via electrocyclic ring opening of the oxazoline 135. Intramolecular cycloaddition afforded 137 in 66% overall yield which was transformed into the aziridinomitosene derivative 138 . [Pg.226]

Aldol reactions of isocyanides with aldehydes are catalyzed by cationic platinum complexes having P-C-P or N-C-N ligands in the presence of a catalytic amount of an amine base to give 2-oxazolines (Equation (126)) 48S>485a>485b Platinum-coordinated a-isocyano carbanions presumably serve as nucleophiles toward aldehydes. Low to moderate enantioselectivities were obtained by using chiral platinum complexes.485 4853... [Pg.471]

Reagent control This involves the addition of a chiral enolate or allyl metal reagent to an achiral aldehyde. Chiral enolates are most commonly formed through the incorporation of chiral auxiliaries in the form of esters, acyl amides (oxazolines), imides (oxazolidinones) or boron enolates. Chiral allyl metal reagents are also typically joined with chiral ligands. [Pg.136]

Treating boron reagent 45a with an oxazoline compound gives the azaeno-late 52. Subsequent aldol reaction of 52 with aldehyde yields mainly threo-product (anti-53) with good selectivities (Scheme 3-18).38... [Pg.151]

When a chiral auxiliary is present in the oxazoline ring and the boron part is replaced with an achiral bicyclic system (46 bearing 9-BBN), erythro-j/-hydroxy esters (syn-53) can be obtained as the major product upon reaction of the eno-late with several aldehydes.37... [Pg.151]


See other pages where Oxazoline aldehyde is mentioned: [Pg.292]    [Pg.292]    [Pg.22]    [Pg.729]    [Pg.241]    [Pg.257]    [Pg.100]    [Pg.62]    [Pg.194]    [Pg.212]    [Pg.191]    [Pg.44]    [Pg.369]    [Pg.385]    [Pg.207]    [Pg.569]    [Pg.56]    [Pg.302]    [Pg.305]    [Pg.306]    [Pg.386]    [Pg.318]    [Pg.77]    [Pg.230]    [Pg.251]    [Pg.9]    [Pg.88]    [Pg.119]   
See also in sourсe #XX -- [ Pg.477 ]




SEARCH



Aldehydes from 4,4-Dimethyl-2-oxazoline and Grignard Reagents

Reviews, oxazolines aldehydes

© 2024 chempedia.info