Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxazolidinone reactions

Combination Diels-Alder/retro-Diels-Alder reactions have been used to prepare substituted furan derivatives from furans and oxazolidinones. Reaction of a furan or oxazolidinone derivative with a disubstituted alkyne (usual dimethyl acetylenedicarboxylate or diethyl acetylenedicarboxylate) produces the Diels-Alder adduct, which can undergo a retro-Diels-Alder reaction to give the desired furan derivative. [Pg.143]

Oxazolidin-5-one, bis(trifluoromethyl)-reactions, 6, 213 Oxazolidinones polymers, 1, 281-282 reactions, 6, 213 Oxazolidinones, imino-rearrangement, 5, 775 Oxazolidinones, vinyl-polymers, 1, 281 Oxazolidin-2-ones circular dichroism, 6, 185 H NMR, 6, 181 IR spectroscopy, 6, 183 PE spectroscopy, 6, 183 reactions, 6, 213... [Pg.729]

D. s-Aaetyl-2(3B)-oxaaolone. The crude mixture of 3-acety1 4- and 5-chloro-2-oxazolidinone from Step C is placed in a 2-L, three-necked flask equipped with a thermometer, sealed mechanical stirrer, and gas discharge tube. The material is heated to 120°C with stirring, and the temperature is then slowly increased to 150 C and held there until the evolution of gas ceases (Note 10). The cooled, black reaction mixture is distilled at 20 nm. The fractions boiling up to 150°C are collected and redistilled through a 50-cm X 3-cm Vigreux column fitted with a variable take-off head. There is obtained 140-172 g (55-68%) of product, bp 108-112°C (24 mm), which solidifies, rap 35-37°C (Note 11). [Pg.151]

The reaction has wide scope in respect of the dienophUe / -substituent. The representative less reactive dienophiles, crotonoyl- and cinnamoyl-oxazolidinone, react with cyclopentadiene at -15 °C and 25 °C for 20 h and 24 h giving cycloadducts in 99% ee and 96% ee, respectively. The 3-chloropropenoyl derivative also affords the adduct in high optical purity (96% ee) this adduct is transformed to 2-(methoxycar-bonyl)norbornadiene, a useful chiral building block. Thus, the 3-chloropropenoyl derivative can be regarded as a synthetic equivalent of an acetylene dienophile. [Pg.28]

A quinoline-phosphine ligand has been developed by Buono et ah, and its complex 29 with Cu(OTf)2 found to be an effective catalyst for the Diels-Alder reaction between acryloyl-oxazolidinone and cyclopentadiene, affording the cycloadduct... [Pg.33]

The Diels-Alder reaction catalyzed by this chiral titanium catalyst 31 has wide generality (Scheme 1.53, 1.54, Table 1.22, 1.23). Acryloyl- and fumaroyl-oxazolidinones react with isoprene giving cycloadducts in high optical purity. 2-Ethylthio-l,3-buta-diene can also be successfully employed as the diene [42]. [Pg.36]

For the construction of oxygen-functionalized Diels-Alder products, Narasaka and coworkers employed the 3-borylpropenoic acid derivative in place of 3-(3-acet-oxypropenoyl)oxazolidinone, which is a poor dienophile in the chiral titanium-catalyzed reaction (Scheme 1.55, Table 1.24). 3-(3-Borylpropenoyl)oxazolidinones react smoothly with acyclic dienes to give the cycloadducts in high optical purity [43]. The boryl group was converted to an hydroxyl group stereospecifically by oxidation, and the alcohol obtained was used as the key intermediate in a total synthesis of (-i-)-paniculide A [44] (Scheme 1.56). [Pg.36]

In most TiCl2-TADDOLate-catalyzed Diels-Alder and 1,3-dipolar cycloaddition reactions oxazolidinone derivatives are applied as auxiliaries for the alkenoyl moiety in order to obtain the favorable bidentate coordination of the substrate to the catalyst... [Pg.226]

In a more recent study on 1,3-dipolar cycloaddition reactions the use of succi-nimide instead of the oxazolidinone auxiliary was introduced (Scheme 6.19) [58]. The succinimide derivatives 24a,b are more reactive towards the 1,3-dipolar cycloaddition reaction with nitrone la and the reaction proceeds in the absence of a catalyst. In the presence of TiCl2-TADDOLate catalyst 23a (5 mol%) the reaction of la with 24a proceeds at -20 to -10 °C, and after conversion of the unstable succinimide adduct into the amide derivative, the corresponding product 25 was obtained in an endojexo ratio of <5 >95. Additionally, the enantioselectivity of the reaction of 72% ee is also an improvement compared to the analogous reaction of the oxazolidinone derivative 19. Similar improvements were obtained in reactions of other related nitrones with 24a and b. [Pg.227]

The TiX2-TADD0Late-catalyzed 1,3-dipolar q cloaddition reactions were extended to include an acrylate derivative [66]. In the absence of a catalyst, the reaction between nitrones 1 and acryloyl oxazolidinone 19b proceeded to give a mixture all eight regio-and stereoisomers (Scheme 6.23). However, application of in this case only 10 mol% of Ti(OTs)2-TADDOLate 23d as catalyst for the reaction of various nitrones 1 with alkene 19b, led to complete regioselectivity and high endo selectivity in the reaction and the endo products 21 were obtained with 48-70% ee (Scheme 6.23) [66]. [Pg.229]

The complexation procedure included addition of an equimolar amount of R,R-DBFOX/Ph to a suspension of a metal salt in dichloromethane. A clear solution resulted after stirring for a few hours at room temperature, indicating that formation of the complex was complete. The resulting solution containing the catalyst complex was used to promote asymmetric Diels-Alder reactions between cyclopen-tadiene and 3-acryloyl-2-oxazolidinone. Both the catalytic activity of the catalysts and levels of chirality induction were evaluated on the basis of the enantio-selectivities observed for the endo cycloadduct. [Pg.251]

Although the aqua nickel(II) complex A was confirmed to be the active catalyst in the Diels-Alder reaction, no information was available about the structure of complex catalyst in solution because of the paramagnetic character of the nickel(II) ion. Either isolation or characterization of the substrate complex, formed by the further complexation of 3-acryloyl-2-oxazolidinone on to the l ,J -DBFOX/ Ph-Ni(C104)2 complex catalyst, was unsuccessful. One possible solution to this problem could be the NMR study by use of the J ,J -DBFOX/Ph-zinc(II) complex (G and H, Scheme 7.9) [57]. [Pg.257]

Among the J ,J -DBFOX/Ph-transition(II) metal complex catalysts examined in nitrone cydoadditions, the anhydrous J ,J -DBFOX/Ph complex catalyst prepared from Ni(C104)2 or Fe(C104)2 provided equally excellent results. For example, in the presence of 10 mol% of the anhydrous nickel(II) complex catalyst R,R-DBFOX/Ph-Ni(C104)2, which was prepared in-situ from J ,J -DBFOX/Ph ligand, NiBr2, and 2 equimolar amounts of AgC104 in dichloromethane, the reaction of 3-crotonoyl-2-oxazolidinone with N-benzylidenemethylamine N-oxide at room temperature produced the 3,4-trans-isoxazolidine (63% yield) in near perfect endo selectivity (endo/exo=99 l) and enantioselectivity in favor for the 3S,4J ,5S enantiomer (>99% ee for the endo isomer. Scheme 7.21). The copper(II) perchlorate complex showed no catalytic activity, however, whereas the ytterbium(III) triflate complex led to the formation of racemic cycloadducts. [Pg.268]

Kobayashi and co-workers reported similar enantioselectivity switch in the bi-nol-yterrbium(III) triflate complex-catalyzed cycloaddition reactions [69] between N-benzylidenebenzylamine N-oxide and 3-crotonoyl-2-oxazolidinone [70]. The reaction in the presence of MS 4 A showed an exclusively high enantioselectivity of 96% ee, while that in the absence of MS 4 A (-50% ee) or in the presence of pyridine N-oxide (-83% ee) had the opposite enantioselectivity (Scheme 7.24). This chirality switch happens generally for the combination of a wide variety of nitrones and dipolarophiles. [Pg.270]

Absolute configurations of the isoxazolidines obtained in the nitrone cydoaddition reactions described in Schemes 7.21 and 7.22 were determined to be 3S,41 ,5S structure by comparison of the optical rotations as well as retention times in a chiral HPLC analysis with those of the authentic samples. Selection of the si face at C/ position of 3-crotonoyl-2-oxazolidinone in nitrone cydoadditions was the same as that observed in the Diels-Alder reactions of cyclopentadiene with 3-croto-noyl-2-oxazolidinone in the presence of the J ,J -DBF0X/Ph-Ni(C104)2-3H20 complex (Scheme 7.7), and this indicates that the s-cis conformation of the dipolaro-phile has participated in the reaction. [Pg.276]

No single examples have been reported so far for the catalyzed asymmetric diazoalkane cydoadditions. Based on the kinetic data on the relative reaction rates observed by Huisgen in the competitive diazomethane cydoadditions between 1-alkene and acrylic ester (Scheme 7.32), it is found that diazomethane is most nu-deophilic of all the 1,3-dipoles examined (kaciyiate/fci-aikene = 250000) [78]. Accordingly, the cydoadditions of diazoalkanes to electron-defident alkenes must be most efficient when catalyzed by a Lewis acid catalyst. The author s group has become aware of this possibility and started to study the catalyzed enantioselective diazoalkane cydoadditions of 3-(2-alkenoyl)-2-oxazolidinones. [Pg.278]

Accordingly, we examined the cycloaddition reactions using trimethylsilyldiazomethane and 3-crotonoyl-2-oxazolidinone in the presence of a wide variety of Lewis... [Pg.279]

Unfortunately the reaction of trimethylsilyldiazomethane with 2-acryloyl-2-oxa-zolidinone led to a racemic result. Since 2-acryloyl-2-oxazolidinone has a terminal-... [Pg.281]

The desilylacetylated qrcloadducts, produced from the reactions of trimethylsilyl-diazomethane with 3-crotonoyl-2-oxazolidinone or 3-crotonoyl-4,4-dimethyl-2-oxa-zolidinone, were transformed to methyl traws-l-acetyl-4-methyl-l-pyrazoline-5-car-boxylate through the reactions with dimethoxymagnesium at -20 °C. When the optical rotations and chiral HPLC data were compared between these two esters, it was found that these two products had opposite absolute stereochemistry (Scheme 7.39). The absolute configuration was identified on the basis of the X-ray-determined structure of the major diastereomer of cycloadduct derived from the reaction of trimethylsilyldiazomethane to (S)-3-crotonoyl-4-methyl-2-oxazolidi-none. [Pg.283]

Enantioselectivities were found to change sharply depending upon the reaction conditions including catalyst structure, reaction temperature, solvent, and additives. Some representative examples of such selectivity dependence are listed in Scheme 7.42. The thiol adduct was formed with 79% ee (81% yield) when the reaction was catalyzed by the J ,J -DBFOX/Ph aqua nickel(II) complex at room temperature in dichloromethane. Reactions using either the anhydrous complex or the aqua complex with MS 4 A gave a racemic adduct, however, indicating that the aqua complex should be more favored than the anhydrous complex in thiol conjugate additions. Slow addition of thiophenol to the dichloromethane solution of 3-crotonoyl-2-oxazolidinone was ineffective for enantioselectivity. Enantioselectivity was dramatically lowered and reversed to -17% ee in the reaction at -78 °C. A similar tendency was observed in the reactions in diethyl ether and THF. For example, a satisfactory enantioselectivity (80% ee) was observed in the reaction in THF at room temperature, while the selectivity almost disappeared (7% ee) at 0°C. [Pg.286]

The time-dependence of enantioselectivity in the reaction thiophenol with 3-cro-tonoyl-2-oxazolidinone catalyzed by l ,J -DBFOX/Ph-Ni(C104)2-3H2O at room temperature in THF is shown in Scheme 7.44. After 3 h, the yield of the thiol adduct is 70% with the enantioselectivity of 91% ee, but the enantioselectivity was 80% ee at the completion of reaction after 24 h (yield 100%). Although the catalyst maintains a high catalytic activity, and hence a satisfactory enantioselectivity, at the early stage of reaction, the deterioration of catalyst cannot be neglected thereafter even under neutral conditions. [Pg.288]


See other pages where Oxazolidinone reactions is mentioned: [Pg.94]    [Pg.333]    [Pg.150]    [Pg.151]    [Pg.26]    [Pg.33]    [Pg.42]    [Pg.227]    [Pg.238]    [Pg.252]    [Pg.254]    [Pg.254]    [Pg.255]    [Pg.261]    [Pg.269]    [Pg.270]    [Pg.277]    [Pg.281]    [Pg.282]    [Pg.282]    [Pg.284]    [Pg.285]    [Pg.286]    [Pg.287]    [Pg.289]    [Pg.289]   
See also in sourсe #XX -- [ Pg.284 , Pg.285 ]




SEARCH



3-Crotonyl-2-oxazolidinone, reaction

Acid chlorides, reaction with oxazolidinones

Aldol reactions 5)-4-benzyl-2-oxazolidinone

Aldol-type reactions oxazolidinones

Diels-Alder reaction oxazolidinone chiral auxiliaries

Hetero-Diels-Alder reaction oxazolidinones

Oxazolidinone

Oxazolidinone aldol reactions

Oxazolidinone asymmetric aldol reactions

Oxazolidinone, Reformatsky reaction

Oxazolidinones

Oxazolidinones 1,3-dipolar cycloaddition reactions

Oxazolidinones Diels-Alder reaction

Oxazolidinones Staudinger reaction

Oxazolidinones, N-acylchiral Diels-Alder reactions

Oxazolidinones, W-acylchiral Diels-Alder reactions

Oxazolidinones, asymmetric reactions

Oxazolidinones, reaction with

Oxazolidinones, reactions

Oxazolidinones, reactions

© 2024 chempedia.info