Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxalic acid, effect bioavailability

Review of studies on the effect of oxalic acid on calcium bioavailability in rats and in humans indicates that most of the research was done between 1930 and 1950. Decreased availability of calcium in young rats was reported when spinach containing oxalic acid was fed with low calcium diets. The extent of the effect of oxalic acid on calcium availability was shown to be related to levels of calcium and oxalic acid, as well as the presence of vitamin D in the diet. In human studies there was generally no effect of oxalic acid on calcium balance however, in a few studies decreased calcium balances were reported. There is recent evidence that oxalic acid consumed along with a moderately high level of fiber intake may have adverse effects on calcium balance of human subjects. [Pg.106]

Several comprehensive reviews on oxalic acid have been published in which effects on calcium metabolism were discussed (7-11). A review of studies on the effect of oxalic acid on calcium bioavailability in rats and humans is presented in this paper. [Pg.106]

In the studies on humans there appeared to be decreased calcium balances when 200 g or more of spinach per day was included in the diet. In two of the studies in which women were fed spinach, calcium intakes were below the Recommended Dietary Allowance of 800 mg/day (37). Some studies were conducted for short period of a week or less, which may not be sufficient time to adjust to a change in diet. From measurement of calcium excretion in urine after a test meal, it was shown that the calcium in oxalate-containing vegetables was less well-absorbed than that of milk or of vegetables not containing oxalic acid. However, this would not necessarily affect calcium balance, since the total amount of calcium in the diet would have to be considered. The effect of a combination of oxalic acid and fiber on calcium bioavailability should be further investigated. [Pg.116]

Little agreement has been reached as to which dietary components or which food processes physiologially affect mineral availability. Many plant foods contain phytic acid, oxalic acid or other dietary fiber components that can be shown to chelate minerals. The effect of these dietary substances upon the final bioavailability of the mineral in question will depend upon the digestibility of the chelate (106). [Pg.268]

Little information is available on the effect of oxalic acid on zinc bioavailability. In one study, Welch et al. ( fed weanling rats zinc-deficient diets with and without 0.75% sodium oxalate. The rats were dosed orally with zinc-labeled spinach leaves or zinc-labeled zinc sulfate. Dietary oxalate enhanced the availability of radioactive zinc from zinc sulfate, but had no effect on zinc from spinach leaves. Absorption and retention of zinc was greater from spinach leaves than from zinc sulfate. [Pg.128]

Many other dietary factors have been reported to affect calcium bioavailability. Phytate, fiber, cellulose, uronic acids, sodium alginate, oxalate, fat (only in the presence of steatorrhea), and alcohol have been reported to decrease calcium bioavailability (15). Lactose and medium chain triglyceride increase it (15). FTuoride also affects calcium retention primarily by stimulating bone formation thereby decreasing calcium excretion (33-38). The effects of fluoride on calcium utilization have been variable (34,38,39). [Pg.24]

Iron bioavailability is affected by valence state, form, solubility, particle size, and com-plexation which in turn may be affected by the food matrix. Complexation of iron has been found to have either a positive or negative effect on availability, with such compounds as ascorbic acid and fructose increasing availability and oxalates, phytates, phosphates and food fibers perhaps decreasing availability. Availability has also been shown to be directly correlated to acid solubility. We have found that acidity tends to increase ionization as well as favoring the ferrous state which has greater solubility at... [Pg.55]


See other pages where Oxalic acid, effect bioavailability is mentioned: [Pg.106]    [Pg.108]    [Pg.110]    [Pg.112]    [Pg.114]    [Pg.116]    [Pg.307]    [Pg.48]    [Pg.305]    [Pg.232]   


SEARCH



Acids oxalic acid

Oxalates, effect

Oxalates, effect bioavailability

Oxalic acid

Oxalic acid, acidity

Oxalic acid, effect

Oxalic acid/oxalate

© 2024 chempedia.info