Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Osmium tetroxide, reactions

Unfortunately, a serious problem with the osmium tetroxide reaction is that Os04 is both very expensive and very toxic. As a result, the reaction is usually carried out using only a small, catalytic amount of OsO, in the presence of a stoichiometric amount of a safe and inexpensive co-oxidant such as A -methylmorpholine N-oxide, abbreviated NMO. The initially formed osmate intermediate reacts rapidly with NMO to yield the product diol plus... [Pg.235]

Osmium tetroxide, reaction with alkenes, 235-236 toxicity of, 235 Oxalic add, structure of, 753 Oxaloacetic acid, structure of, 753 Oxetane, reaction with Grignard reagents, 680 Oxidation, 233, 348 alcohols, 623-626 aldehydes, 700-701 aldoses, 992-994 alkenes, 233-236 biological, 625-626 phenols, 631 sulfides, 670 thiols, 668... [Pg.1310]

Another method for the hydroxylation of the etliylenic linkage consists in treatment of the alkene with osmium tetroxide in an inert solvent (ether or dioxan) at room temperature for several days an osmic ester is formed which either precipitates from the reaction mixture or may be isolated by evaporation of the solvent. Hydrolysis of the osmic ester in a reducing medium (in the presence of alkaline formaldehyde or of aqueous-alcoholic sodium sulphite) gives the 1 2-glycol and osmium. The glycol has the cis structure it is probably derived from the cyclic osmic ester ... [Pg.894]

Chemical ingenuity in using the properties of the elements and their compounds has allowed analyses to be carried out by processes analogous to the generation of hydrides. Osmium tetroxide is very volatile and can be formed easily by oxidation of osmium compounds. Some metals form volatile acetylacetonates (acac), such as iron, zinc, cobalt, chromium, and manganese (Figure 15.4). Iodides can be oxidized easily to iodine (another volatile element in itself), and carbonates or bicarbonates can be examined as COj after reaction with acid. [Pg.100]

Oxidation. Maleic and fumaric acids are oxidized in aqueous solution by ozone [10028-15-6] (qv) (85). Products of the reaction include glyoxyhc acid [298-12-4], oxalic acid [144-62-7], and formic acid [64-18-6], Catalytic oxidation of aqueous maleic acid occurs with hydrogen peroxide [7722-84-1] in the presence of sodium tungstate(VI) [13472-45-2] (86) and sodium molybdate(VI) [7631-95-0] (87). Both catalyst systems avoid formation of tartaric acid [133-37-9] and produce i j -epoxysuccinic acid [16533-72-5] at pH values above 5. The reaction of maleic anhydride and hydrogen peroxide in an inert solvent (methylene chloride [75-09-2]) gives permaleic acid [4565-24-6], HOOC—CH=CH—CO H (88) which is useful in Baeyer-ViUiger reactions. Both maleate and fumarate [142-42-7] are hydroxylated to tartaric acid using an osmium tetroxide [20816-12-0]/io 2LX.e [15454-31 -6] catalyst system (89). [Pg.452]

The residue, which contains Ir, Ru, and Os, is fused with sodium peroxide at 500°C, forming soluble sodium mthenate and sodium osmate. Reaction of these salts with chlorine produces volatile tetroxides, which are separated from the reaction medium by distillation and absorbed into hydrochloric acid. The osmium can then be separated from the mthenium by boiling the chloride solution with nitric acid. Osmium forms volatile osmium tetroxide mthenium remains in solution. Ruthenium and osmium can thus be separately purified and reduced to give the metals. [Pg.168]

Chemical degradation studies carried out on streptovaricias A and C, which are the primary components of the cmde complex, yielded substances shown ia Figure 1. Streptovaricia A (4), consumes two moles of sodium periodate to yield variciaal A [21913-68-8] (1), 0 2 200, which accounts for the ahphatic portion of the molecule, and prestreptovarone [58074-37-6] (2), C2C)H2C)N02, which accounts for the aromatic chromophore of the streptovaricias (Fig. 2). Streptovaricia G (9) is the only other streptovaricia that yields prestreptovaroae upoa treatmeat with sodium periodate. Treatmeat of streptovaricias A (4), B (5), C (6), E (8), and G (9) with sodium periodate and osmium tetroxide yields streptovarone [36108-44-8] (3), C24H23NO2, which is also produced by the reaction of prestreptovarone with sodium periodate and osmium tetroxide (4,65). A number of aliphatic products were isolated from the oxidation of streptovaricia C and its derivatives (66). [Pg.493]

There are also reactions which show stereoselectivity primarily because of mechanism rather than spatial bias of substrate. For instance, the conversion of an olefin to a 1,2-diol by osmium tetroxide mechanistically is a cycloaddition process which is strictly suprafacial. The hydroxylation transform has elements of both substrate and mechanism control, as illustrated by the retrosynthetic conversion of 146 to 147. The validity of the retrosynthetic removal of both... [Pg.48]

Thus, Mathis et al. [1, 2] investigated oxidation reactions with 4-nitroperbenzoic acid, sodium hypobromite, osmium tetroxide and ruthenium tetroxide. Hamann et al. [3] employed phosphorus oxychloride in pyridine for dehydration. However, this method is accompanied by the disadvantages that the volume applied is increased because reagent has been added and that water is sometimes produced in the reaction and has to be removed before the chromatographic separation. [Pg.55]

Because osmium tetroxide is expensive, and its vapors are toxic, alternate methods have been explored for effecting vic-glycol formation. In the aliphatic series, olefins can be hydroxylated with hydrogen peroxide with the use of only a catalytic amount of osmium tetroxide. Anhydrous conditions are not necessary 30% hydrogen peroxide in acetone or acetone-ether is satisfactory. The intermediate osmate ester is presumably cleaved by peroxide to the glycol with regeneration of osmium tetroxide. When this reaction was tried on a A -steroid, the product isolated was the 20-ketone ... [Pg.184]

Similar hydroxylation-oxidations can be carried out using a catalytic amount of osmium tetroxide with A-methylmorpholine oxide-hydrogen peroxide or phenyliodosoacetate." A recent patent describes the use of triethylamine oxide peroxide and osmium tetroxide for the same sequence. Since these reactions are of great importance for the preparation of the di-hydroxyacetone side-chain of corticoids, they will be discussed in a later section. [Pg.184]

Many of the reactions already discussed for the preparation of bis-oxygenated pregnanes can also be used for the synthesis of 17,20,21-tris-oxygenated pregnanes by proper choice of substrate. Thus, reaction of a 17-vinyl-17-hydroxy steroid or a A -21-hydroxypregnene with osmium tetroxide will give the 17,20,21-triol, and the Stork reaction can be applied to 17a-hydroxy-20-keto steroids. [Pg.217]

One reaction touched upon briefly in an earlier discussion is the hydroxyla-tion of a A -20-cyano steroid with osmium tetroxide. When a 21-acetoxyl group is also present, the important dihydroxyacetone side-chain is obtained ... [Pg.217]

Osmium Tetroxide Oxidation of a A -Cyanopregnene 20-Cyano-21-hydroxy-5j5-pregn-17(20)-ene-3,l l-dione21-methyl ether (8 g) isdissolved in 100 ml of benzene and 8 ml of pyridine. After the addition of 9.6 g of osmium tetroxide, the reaction mixture is stoppered and allowed to stand at room temperature for 5 days. The mixture is stirred for 24 hr with 160 ml of chloroform, 200 ml of methanol and 280 ml of an aqueous solution... [Pg.224]

Hydroxycortisone BMD) (48) A solution of 4 g of 17a,20 20,21-bis-methylenedioxypregn-4-ene-3,l 1-dione (cortisone BMD) (46) dissolved in 300 ml of t-butanol and 5 ml of water is treated with 34 ml of 35 % hydrogen peroxide and 0.45 g of osmium tetroxide predissolved in 36 ml of /-butanol. The resulting mixture is allowed to stand at room temperature for 2 days. Diol (47) which crystallizes during the reaction is collected by filtration and washed with /-butanol and water. The filtrate is diluted with ethyl acetate and washed sequentially with aqueous sodium chloride, aqueous 10% sodium bisulfite, aqueous 10% sodium bicarbonate and finally with water to neutrality. The solvent is evaporated and a second crop of the diol (47) is collected, providing a total of about 3.8 g. [Pg.423]

Another important reaction associated with the name of Sharpless is the so-called Sharpless dihydroxylation i.e. the asymmetric dihydroxylation of alkenes upon treatment with osmium tetroxide in the presence of a cinchona alkaloid, such as dihydroquinine, dihydroquinidine or derivatives thereof, as the chiral ligand. This reaction is of wide applicability for the enantioselective dihydroxylation of alkenes, since it does not require additional functional groups in the substrate molecule ... [Pg.256]

With this reaction, two new asymmetric centers can be generated in one step from an achiral precursor in moderate to good enantiomeric purity by using a chiral catalyst for oxidation. The Sharpless dihydroxylation has been developed from the earlier y -dihydroxylation of alkenes with osmium tetroxide, which usually led to a racemic mixture. [Pg.257]

Scheme 2. The osmium tetroxide mediated dihydroxylation reaction. Scheme 2. The osmium tetroxide mediated dihydroxylation reaction.

See other pages where Osmium tetroxide, reactions is mentioned: [Pg.369]    [Pg.141]    [Pg.58]    [Pg.249]    [Pg.61]    [Pg.369]    [Pg.369]    [Pg.141]    [Pg.58]    [Pg.249]    [Pg.61]    [Pg.369]    [Pg.210]    [Pg.282]    [Pg.179]    [Pg.179]    [Pg.377]    [Pg.417]    [Pg.74]    [Pg.425]    [Pg.168]    [Pg.89]    [Pg.258]    [Pg.190]    [Pg.201]    [Pg.320]    [Pg.563]    [Pg.235]    [Pg.200]    [Pg.620]    [Pg.676]   
See also in sourсe #XX -- [ Pg.4 , Pg.590 ]




SEARCH



Osmium reaction

Osmium tetroxide

Tetroxides

© 2024 chempedia.info