Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organometallic formation

Organometallic formation may result from a chain mechanism [Eqs. (21)-(23) and (18)—(20)] and/or radical displacement [Eqs. (21)-(23), alone]. The reaction of 13C-labeled mercuric cyclohexanoate with cyclohexylcarbonyl peroxide (1 1) gave mainly unlabeled organomercu-rial, which was derived from radical displacement (122). Decarboxylation by a chain mechanism was reported for the syntheses of organomercuric carboxylates of straight chain alkyls [R = Me(CH2) , n - 0-8, 10, or 15 (123-131)], branched alkyls [R = Me2CH(CH2) , n = 0 or 2 (132) or Me3C(CH2) , n = 0-2 (133)], substituted alkyls [R = cyclopentylmethyl... [Pg.268]

The introduction of additional alkyl groups mostly involves the formation of a bond between a carbanion and a carbon attached to a suitable leaving group. S,.,2-reactions prevail, although radical mechanisms are also possible, especially if organometallic compounds are involved. Since many carbanions and radicals are easily oxidized by oxygen, working under inert gas is advised, until it has been shown for each specific reaction that air has no harmful effect on yields. [Pg.19]

Regioselectivity of C—C double bond formation can also be achieved in the reductiv or oxidative elimination of two functional groups from adjacent carbon atoms. Well estab llshed methods in synthesis include the reductive cleavage of cyclic thionocarbonates derivec from glycols (E.J. Corey, 1968 C W. Hartmann, 1972), the reduction of epoxides with Zn/Nal or of dihalides with metals, organometallic compounds, or Nal/acetone (seep.lS6f), and the oxidative decarboxylation of 1,2-dicarboxylic acids (C.A. Grob, 1958 S. Masamune, 1966 R.A. Sheldon, 1972) or their r-butyl peresters (E.N. Cain, 1969). [Pg.142]

Formation of ketones. Ketones can be prepared by the carbonylation of halides and pseudo-halides in the presence of various organometallic compounds of Zn, B, Al, Sn, Si, and Hg, and other carbon nucleophiles, which attack acylpalladium intermediates (transmetallation and reductive elimination). [Pg.200]

Another important reaction via transmetallation is carbon-metal bond formation by reaction with bimetallic reagents. This is a useful synthetic method for various main group organometallic reagents. [Pg.209]

In addition, a catalytic version of Tt-allylpalladium chemistry has been devel-oped[6,7]. Formation of the Tr-allylpalladium complexes by the oxidative addition of various allylic compounds to Pd(0) and subsequent reaction of the complex with soft carbon nucleophiles are the basis of catalytic allylation. After the reaction, Pd(0) is reformed, and undergoes oxidative addition to the allylic compounds again, making the reaction catalytic.-In addition to the soft carbon nucleophiles, hard carbon nucleophiles of organometallic compounds of main group metals are allylated with 7r-allylpalladium complexes. The reaction proceeds via transmetallation. These catalytic reactions are treated in this chapter. [Pg.290]

The stereochemistry of the Pd-catalyzed allylation of nucleophiles has been studied extensively[5,l8-20]. In the first step, 7r-allylpalladium complex formation by the attack of Pd(0) on an allylic part proceeds by inversion (anti attack). Then subsequent reaction of soft carbon nucleophiles, N- and 0-nucleophiles proceeds by inversion to give 1. Thus overall retention is observed. On the other hand, the reaction of hard carbon nucleophiles of organometallic compounds proceeds via transmetallation, which affords 2 by retention, and reductive elimination affords the final product 3. Thus the overall inversion is observed in this case[21,22]. [Pg.292]

Ketones can be prepared by trapping (transmetallation) the acyl palladium intermediate 402 with organometallic reagents. The allylic chloride 400 is car-bonylated to give the mixed diallylic ketone 403 in the presence of allyltri-butylstannane (401) in moderate yields[256]. Alkenyl- and arylstannanes are also used for ketone synthesis from allylic chlorides[257,258]. Total syntheses of dendrolasin (404)f258] and manoalide[259] have been carried out employing this reaction. Similarly, formation of the ketone 406 takes place with the alkylzinc reagent 405[260],... [Pg.343]

You have already had considerable experience with carbanionic compounds and their applications in synthetic organic chemistry The first was acetyhde ion m Chapter 9 followed m Chapter 14 by organometallic compounds—Grignard reagents for example—that act as sources of negatively polarized carbon In Chapter 18 you learned that enolate ions—reactive intermediates generated from aldehydes and ketones—are nucleophilic and that this property can be used to advantage as a method for carbon-carbon bond formation... [Pg.886]

Carbanions are very useful intermediates in the formation of carbon-carbon bonds. This is true both for unstabilized structures found in organometallic reagents and stabilized structures such as enolates. Carbanions can participate as nucleophiles both in addition and in substitution reactions. At this point, we will discuss aspects of the reactions of carbanions as nucleophiles in reactions that proceed by the 8 2 mechanism. Other synthetic aj lications of carbanions will be discussed more completely in Part B. [Pg.432]

The addition of carbon nucleophile, including organometallic compounds, enolates, or enols, and ylides to carbonyl gro is an important method of formation of carbon-carbon bonds. Such reactions are- ctremely important in synthesis and will be discussed extensively in Part B. Here, we will examine some of the fundamental mechanistic aspects of addition of carbon nucleophiles to carbonyl groups. [Pg.462]

Benzyne can also be generated from o-dihaloaromatics. Reaction of lithium amalgam or magnesium results in formation of a transient organometallic compound that decomposes with elimination of lithium halide. l-Bromo-2-fluorobenzene is the usual starting material in this procedure. [Pg.596]

Organometallic chemistry of pyrrole is characterized by a delicate balance of the ti N)- and -coordination modes. Azacymantrene is an illustration of the considerable nucleophilicity of the heteroatom. However, azaferrocene can be alkylated at C2 and C3 sites. Ruthenium and osmium, rhodium, and iridium chemistry revealed the bridging function of pyrroles, including zwitterionic and pyrrolyne complex formation. The ti (CC) coordination of osmium(2- -) allows versatile derivatizations of the heteroring. [Pg.178]

Reactivity and selectivity of organometallic reagents addition to C=N bond with participation and formation of heterocycles 98CRV1407. [Pg.210]

The Group VI organometallic chemistry is mainly characterized by the occurrence of N- and C-coordination and carbene complex-formation, as well as by some unique cases of Se- (Te-) coordination, ring opening and deselenation. The Group VII organometallic chemistry is known for the carbene and chelate structures of the derivatized thiazoles. [Pg.212]

Grignard reagents are a very important class of organometallic compounds. For their preparation an alkyl halide or aryl halide 5 is reacted with magnesium metal. The formation of the organometallic species takes place at the metal surface by transfer of an electron from magnesium to a halide molecule, an alkyl or aryl radical species 6 respectively is formed. Whether the intermediate radical species stays adsorbed at the metal surface (the A-modelf, or desorbs into solution (the D-model), still is in debate ... [Pg.142]

The Peterson olefination can be viewed as a silicon variant of the Wittig reaction, the well-known method for the formation of carbon-carbon double bonds. A ketone or aldehyde 1 can react with an a-silyl organometallic compound 2—e.g. with M = Li or Mg—to yield an alkene 3. [Pg.227]

The Peterson olefination is a quite modern method in organic synthesis its mechanism is still not completely understood. " The a-silyl organometallic reagent 2 reacts with the carbonyl substrate 1 by formation of a carbon-carbon single bond to give the diastereomeric alkoxides 4a and 4b upon hydrolysis the latter are converted into /3-hydroxysilanes 5a and 5b ... [Pg.227]


See other pages where Organometallic formation is mentioned: [Pg.434]    [Pg.141]    [Pg.46]    [Pg.165]    [Pg.6]    [Pg.209]    [Pg.212]    [Pg.218]    [Pg.559]    [Pg.587]    [Pg.28]    [Pg.343]    [Pg.167]    [Pg.236]    [Pg.42]    [Pg.16]    [Pg.69]    [Pg.587]    [Pg.181]    [Pg.926]    [Pg.109]    [Pg.185]    [Pg.49]    [Pg.19]    [Pg.192]    [Pg.47]    [Pg.293]    [Pg.86]    [Pg.161]   
See also in sourсe #XX -- [ Pg.2 , Pg.4 , Pg.5 , Pg.8 ]




SEARCH



© 2024 chempedia.info