Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organic acid—base reactions

Early attempts to fathom organic reactions were based on their classification into ionic (heterolytic) or free-radical (homolytic) types.1 These were later subclassified in terms of either electrophilic or nucleophilic reactivity of both ionic and paramagnetic intermediates - but none of these classifications carries with it any quantitative mechanistic information. Alternatively, organic reactions have been described in terms of acids and bases in the restricted Bronsted sense, or more generally in terms of Lewis acids and bases to generate cations and anions. However, organic cations are subject to one-electron reduction (and anions to oxidation) to produce radicals, i.e.,... [Pg.194]

Electronically excited states of organic molecules, acid-base properties of, 12,131 Energetic tritium and carbon atoms, reactions of, with organic compounds, 2, 201 Enolisation of simple carbonyl compounds and related reactions, 18,1 Entropies of activation and mechanisms of reactions in solution, 1,1 Enzymatic catalysis, physical organic model systems and the problem of, 11, 1 Enzyme action, catalysis of micelles, membranes and other aqueous aggregates as models of, 17. 435... [Pg.337]

Electronically excited states of organic molecules, acid-base properties of, 12, 131 Energetic tritium and carbon atoms, reactions of, with organic compounds, 2, 201... [Pg.355]

A major development in the study of EGB s is the recently reported measurements of rates of protonation by acids of known pK. The correlation of such rates with pK, the Bronsted relationship, also enables bases of determined pK to be used in the measurement of kinetic acidities of weak acids. This quantitative approach will eventually lead to the optimisation of reaction conditions for preparative reactions by providing data which can be used to match the acid/base pairs more exactly. In many organic reactions involving bases the base chosen is stronger than is strictly neccessary and consequently such reactions are often complicated by side reactions such as condensation reactions and isomerisations. The advantage of an EGB of moderate strength has been seen in the vitamin A preparation described in Scheme 18, where the facile cisftrans isomerisation is avoided. [Pg.161]

In addition to organic reactions, acid catalysed hydrolysis of cellulose has been performed in a rapid and controlled manner using a microwave reactor. Given this reaction, it is likely that aqueous phase microwave assisted reactions will play an important role in the rapid development of biorefinery based materials and chemicals. [Pg.57]

Factors influencing the rate of chemical reaction are surface tension polarity of the organic solvent acid-base properties of the aqueous phase relative rate of hydrolysis and other side reactions (salt formation, etc.) rate of separation of polymer out of solution rate of removal of side products of the reaction. [Pg.483]

Throughout this chapter, we have examined different types of chemical reactions. We have seen examples of precipitation reactions, acid-base reactions, gas evolution reactions, oxidation-reduction reactions, and combustion reactions. We can organize these different t)q>es of reactions with the following flowchart. [Pg.228]

N,N,N, N -tetramethyl-l,8,-naph-thalenediamiDe M.P. 51 C. A remarkably strong mono-acidic base (pKg 12-3) which is almost completely non-nucleophilic and valuable for promoting organic elimination reactions (e.g. of alkyl halides to alkenes) without substitution. [Pg.60]

The complex greases are obtained by the reaction of bases with mixtures of organic and/or inorganic acids. The three groups of complex greases are ... [Pg.281]

Our first three chapters established some fundamental principles concerning the structure of organic molecules and introduced the connection between structure and reactivity with a review of acid-base reactions In this chapter we explore structure and reactivity m more detail by developing two concepts functional groups and reaction mechanisms A functional group is the atom or group m a molecule most respon sible for the reaction the compound undergoes under a prescribed set of conditions How the structure of the reactant is transformed to that of the product is what we mean by the reaction mechanism... [Pg.142]

In a simple liquid-liquid extraction the solute is partitioned between two immiscible phases. In most cases one of the phases is aqueous, and the other phase is an organic solvent such as diethyl ether or chloroform. Because the phases are immiscible, they form two layers, with the denser phase on the bottom. The solute is initially present in one phase, but after extraction it is present in both phases. The efficiency of a liquid-liquid extraction is determined by the equilibrium constant for the solute s partitioning between the two phases. Extraction efficiency is also influenced by any secondary reactions involving the solute. Examples of secondary reactions include acid-base and complexation equilibria. [Pg.215]

Furfuryl alcohol, on long storage, becomes progressively darker and less water soluble, a change that is also caused by heat, acidity, and exposure to air. The reactions responsible for this change in water solubiUty may be retarded by the addition in small quantity of an organic or inorganic base. Commercial furfuryl alcohol, however, usually does not contain any additives. [Pg.80]

Sulfates. Indium metal and its oxides dissolve in warm sulfuric acid to give a solution of the trisulfate [13464-82-9], In2(S0 2- It is a white, crystalline, deUquescent soHd, readily soluble in water that forms double salts with alkaLi sulfates and some organic substituted ammonium bases. Concentration of the acidified trisulfate solution produces indium acid sulfate crystal [57344-73-7], In(HS0 2> other reaction conditions give basic sulfates. [Pg.81]

Acid—Base Catalysis. Inexpensive mineral acids, eg, H2SO4, and bases, eg, KOH, in aqueous solution are widely appHed as catalysts in industrial organic synthesis. Catalytic reactions include esterifications, hydrations, dehydrations, and condensations. Much of the technology is old and well estabhshed, and the chemistry is well understood. Reactions that are cataly2ed by acids are also typically cataly2ed by bases. In some instances, the kinetics of the reaction has a form such as the following (9) ... [Pg.162]

Many organic reactions involve acid concentrations considerably higher than can be accurately measured on the pH scale, which applies to relatively dilute aqueous solutions. It is not difficult to prepare solutions in which the formal proton concentration is 10 M or more, but these formal concentrations are not a suitable measure of the activity of protons in such solutions. For this reason, it has been necessaiy to develop acidity functions to measure the proton-donating strength of concentrated acidic solutions. The activity of the hydrogen ion (solvated proton) can be related to the extent of protonation of a series of bases by the equilibrium expression for the protonation reaction. [Pg.232]

Flowever, extreme caution is necessary with mixed chemical systems since many which are thermodynamically unstable exhibit considerable kinetic stability. The kinetic barrier to stability may be overcome if traces of catalyst are present, and result in a violent reaction. The most common catalysts derive from metals, or their compounds, and the unpredictable behaviour of many reactions arises from the unwitting presence of impurities. Other catalysts include acids, bases, organic free-radical precursors, etc. Flence any system must be treated with care which... [Pg.228]


See other pages where Organic acid—base reactions is mentioned: [Pg.790]    [Pg.369]    [Pg.9]    [Pg.167]    [Pg.177]    [Pg.49]    [Pg.303]    [Pg.298]    [Pg.459]    [Pg.344]    [Pg.77]   
See also in sourсe #XX -- [ Pg.56 , Pg.57 , Pg.61 ]




SEARCH



Acid base reactions

Bases, acid-base reactions

Organic bases

Organic chemicals acid-base reactions

Organic reaction mechanism acid—base reactions

Organic reactions, Lewis acid-base processes

© 2024 chempedia.info