Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Orbital spinor

Representation of orbital spinors of symmetric molecules in terms of relativistic double groups [6]. [Pg.200]

At the restoration stage, a one-center expansion in the spherical harmonics with numerical radial parts is most appropriate both for orbitals (spinors) and for the description of external interactions with respect to the core regions of a considered molecule. In the scope of the discussed two-step methods for the electronic structure calculation of a molecule, finite nucleus models and quantum electrodynamic terms including, in particular, two-electron Breit interaction may be taken into account without problems [67]. [Pg.263]

It may be asked how accurate energy-consistent pseudopotentials will reproduce the shape of the valence orbitals/spinors and their energies. Often radial expectation values < r > are used as a convenient measure for the radial shape of orbitals/spinors. Due to the pseudo-valence orbital transformation and the simplified nodal structure it is clear that values n < 0 are not suitable, since the resulting operator samples the orbitals mainly in the core region. Table 2 lists orbital energies, < r > and < > expectation values for the Db [Rn] 5f 6d ... [Pg.828]

Similarly as in Section 1.2, one starts from atomic AE reference calculations at the independent-particle level (some kind of quasi-relativistic HF or fully relativistic DHF). The first step now in setting up pseudopotentials consists in a smoothing procedure for valence orbitals/spinors ( pseudo-orbital transformation ). In the DHF case, to be specific, the radial part ( )/ of the large component of the energetically lowest valence spinors for each //-combination is transformed according to... [Pg.246]

Orbital (spinor) energies from AREP-HF (REP-KRHF) calculations at the optimized geometries, and ionization potentials from photoelectron spectroscopy for methyl halides and carbon tetrahalides. Units are in eV, and the degeneracy number is set in parenthesis. [Pg.380]

The relativistic correction for the kinetic energy in the Dirac equation is naturally applicable to the Kohn-Sham equation. This relativistic Kohn-Sham equation is called the Dirac-KohnSham equation (Rajagopal 1978 MacDonald and Vosko 1979). The Dirac-Kohn-Sham equation is founded on the Rajagopal-Callaway theorem, which is the relativistic expansion of the Hohenberg-Kohn theorem on the basis of QED (Rajagopal and Callaway 1973). In this theorem, two theorems are contained The first theorem proves that the four-component external potential, which is the vector-potential-extended external potential, is determined by the four-component current density, which is the current-density-extended electron density. On the other hand, the second theorem establishes the variational principle for every four-component current density. See Sect. 6.5 for vector potential and current density. Consequently, the solution of the Dirac-Kohn-Sham equation is represented by the four-component orbital. This four-component orbital is often called a molecular spinor. However, this name includes no indication of orbital, which is the solution of one-electron SCF equations moreover, the targets of the calculations are not restricted to molecules. Therefore, in this book, this four-component orbital is called an orbital spinor. The Dirac-Kohn-Sham wavefunction is represented by the Slater determinant of orbital spinors (see Sect. 2.3). Following the Roothaan method (see Sect. 2.5), orbital spinors are represented by a linear combination of the four-component basis spinor functions, Xp, ... [Pg.147]

This is the most general expression obtained from a set of natural spin orbitals written in spinor form as... [Pg.131]

The orbitals <]) j(k r) are Bloch functions labeled by a wave vector k in the first Brillouin zone (BZ), a band index p, and a subscript i indicating the spinor component. The combination of k and p. can be thought of as a label of an irreducible representation of the space group of the crystal. Thequantity n (k)is the occupation function which measures... [Pg.131]

The twin facts that heavy-atom compounds like BaF, T1F, and YbF contain many electrons and that the behavior of these electrons must be treated relati-vistically introduce severe impediments to theoretical treatments, that is, to the inclusion of sufficient electron correlation in this kind of molecule. Due to this computational complexity, calculations of P,T-odd interaction constants have been carried out with relativistic matching of nonrelativistic wavefunctions (approximate relativistic spinors) [42], relativistic effective core potentials (RECP) [43, 34], or at the all-electron Dirac-Fock (DF) level [35, 44]. For example, the first calculation of P,T-odd interactions in T1F was carried out in 1980 by Hinds and Sandars [42] using approximate relativistic wavefunctions generated from nonrelativistic single particle orbitals. [Pg.253]

An important advantage of ECP basis sets is their ability to incorporate approximately the physical effects of relativistic core contraction and associated changes in screening on valence orbitals, by suitable adjustments of the radius of the effective core potential. Thus, the ECP valence atomic orbitals can approximately mimic those of a fully relativistic (spinor) atomic calculation, rather than the non-relativistic all-electron orbitals they are nominally serving to replace. The partial inclusion of relativistic effects is an important physical correction for heavier atoms, particularly of the second transition series and beyond. Thus, an ECP-like treatment of heavy atoms is necessary in the non-relativistic framework of standard electronic-structure packages, even if the reduction in number of... [Pg.713]

Table I also contains an analysis of the orbital character of these five energy levels. These were determined from the four-component spinors by neglecting the two lower, "small," components, and by assuming that the radial functions depend only upon , i.e. that the radial functions for pi/2 and p3/2> or for da/2 and ds/2> are the same. The orbitals may then be written in "Pauli" form as products of (complex) spherical harmonics and spin functions. Populations are equal to the squares of the absolute magnitudes of the coefficients listed in Table I. [For all but 17e3g, an additional orbital (not shown) is occupied which has the same energy but the opposite spin pattern (i.e. a and 3 are interchanged).]... Table I also contains an analysis of the orbital character of these five energy levels. These were determined from the four-component spinors by neglecting the two lower, "small," components, and by assuming that the radial functions depend only upon , i.e. that the radial functions for pi/2 and p3/2> or for da/2 and ds/2> are the same. The orbitals may then be written in "Pauli" form as products of (complex) spherical harmonics and spin functions. Populations are equal to the squares of the absolute magnitudes of the coefficients listed in Table I. [For all but 17e3g, an additional orbital (not shown) is occupied which has the same energy but the opposite spin pattern (i.e. a and 3 are interchanged).]...
Heavy atoms exhibit large relativistic effects, often too large to be treated perturba-tively. The Schrodinger equation must be supplanted by an appropriate relativistic wave equation such as Dirac-Coulomb or Dirac-Coulomb-Breit. Approximate one-electron solutions to these equations may be obtained by the self-consistent-field procedure. The resulting Dirac-Fock or Dirac-Fock-Breit functions are conceptually similar to the familiar Hartree-Fock functions the Hartree-Fock orbitals are replaced, however, by four-component spinors. Correlation is no less important in the relativistic regime than it is for the lighter elements, and may be included in a similar manner. [Pg.161]

The no-pair DCB Hamiltonian (6) is used as a starting point for variational or many-body relativistic calculations [9], The procedure is similar to the nonrelativistic case, with the Hartree-Fock orbitals replaced by the four-component Dirac-Fock-Breit (DFB) functions. The spherical symmetry of atoms leads to the separation of the one-electron equation into radial and spin-angular parts [10], The radial four-spinor has the so-called large component the upper two places and the small component Q, in the lower two. The quantum number k (with k =j+ 1/2) comes from the spin-angular equation, and n is the principal quantum number, which counts the solutions of the radial equation with the same k. Defining... [Pg.163]

Ishikawa and coworkers [15,24] have shown that G-spinors, with orbitals spanned in Gaussian-type functions (GIF) chosen according to (14), satisfy kinetic balance for finite c values if the nucleus is modeled as a uniformly-charged sphere. [Pg.164]

Equation (1) is obtained by using an expansion in E/ 2c - Vc) on the Dirac Fock equation. This expansion is valid even for a singular Coulombic potential near the nucleus, hence the name regular approximation. This is in contrast with the Pauli method, which uses an expansion in (E — V)I2(. Everything is written in terms of the two component ZORA orbitals, instead of using the large and small component Dirac spinors. This is an extra approximation with respect to the original formalism. [Pg.252]

The spin density should follow from the density matrix (38), which includes the spin variables. As in (42), Qa(x x ) will be a sum of terms containing the various spinor components, summed over all spin-orbitals in the natural expansion. A typical term will be... [Pg.33]


See other pages where Orbital spinor is mentioned: [Pg.362]    [Pg.136]    [Pg.243]    [Pg.243]    [Pg.248]    [Pg.252]    [Pg.381]    [Pg.148]    [Pg.151]    [Pg.408]    [Pg.610]    [Pg.567]    [Pg.362]    [Pg.107]    [Pg.362]    [Pg.136]    [Pg.243]    [Pg.243]    [Pg.248]    [Pg.252]    [Pg.381]    [Pg.148]    [Pg.151]    [Pg.408]    [Pg.610]    [Pg.567]    [Pg.362]    [Pg.107]    [Pg.213]    [Pg.148]    [Pg.260]    [Pg.3]    [Pg.73]    [Pg.206]    [Pg.60]    [Pg.131]    [Pg.247]    [Pg.131]    [Pg.247]    [Pg.30]   
See also in sourсe #XX -- [ Pg.147 ]




SEARCH



Spinors

© 2024 chempedia.info