Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Orbital functionals Schrodinger

The fermion creation and destruction operators are defined such that apa +a ap = Spq. In analogy to relativistic theory, and more appropriate to the linear response theory to be considered here, the elementary fermion operators ap can be treated as algebraic objects fixed in time, while the orbital functions are solutions of a time-dependent Schrodinger equation... [Pg.79]

V-clcctron state T, correlation energy can be defined for any stationary state by Ec = E — / o, where Eo = ( //1) and E = ( // 4 ). Conventional normalization ) = ( ) = 1 is assumed. A formally exact functional Fc[4>] exists for stationary states, for which a mapping — F is established by the Schrodinger equation [292], Because both and p are defined by the occupied orbital functions occupation numbers nt, /i 4>, E[p and E[ (p, ] are equivalent functionals. Since E0 is an explicit orbital functional, any approximation to Ec as an orbital functional defines a TOFT theory. Because a formally exact functional Ec exists for stationary states, linear response of such a state can also be described by a formally exact TOFT theory. In nonperturbative time-dependent theory, total energy is defined only as a mean value E(t), which lies outside the range of definition of the exact orbital functional Ec [ ] for stationary states. Although this may preclude a formally exact TOFT theory, the formalism remains valid for any model based on an approximate functional Ec. [Pg.83]

This work introduced the concept of a vibronic R-matrix, defined on a hypersurface in the joint coordinate space of electrons and intemuclear coordinates. In considering the vibronic problem, it is assumed that a matrix representation of the Schrodinger equation for N+1 electrons has been partitioned to produce an equivalent set of multichannel one-electron equations coupled by a matrix array of nonlocal optical potential operators [270], In the body-fixed reference frame, partial wave functions in the separate channels have the form p(q xN)YL(0, radial channel orbital function i/(q r) and antisymmetrized in the electronic coordinates. Here 0 is a fixed-nuclei A-electron target state or pseudostate and Y] is a spherical harmonic function. Both and i r are parametric functions of the intemuclear coordinate q. It is assumed that the target states 0 for each value of q diagonalize the A-electron Hamiltonian matrix and are orthonormal. [Pg.169]

In the two-adiabatic-electronic-state Bom-Huang description of the total orbital wave function, we wish to solve the corresponding nuclear motion Schrodinger equation in the diabatic representation... [Pg.208]

One of the advantages of this method is that it breaks the many-electron Schrodinger equation into many simpler one-electron equations. Each one-electron equation is solved to yield a single-electron wave function, called an orbital, and an energy, called an orbital energy. The orbital describes the behavior of an electron in the net field of all the other electrons. [Pg.19]

The fact that an electron has an intrinsic spin comes out of a relativistic formulation of quantum mechanics. Even though the Schrodinger equation does not predict it, wave functions that are antisymmetric and have two electrons per orbital are used for nonreiativistic calculations. This is necessary in order to obtain results that are in any way reasonable. [Pg.261]

Solution of the Schrodinger equation for R i r), known as the radial wave functions since they are functions only of r, follows a well-known mathematical procedure to produce the solutions known as the associated Laguerre functions, of which a few are given in Table 1.2. The radius of the Bohr orbit for n = 1 is given by... [Pg.13]

Exact solutions to the electronic Schrodinger equation are not possible for many-electron atoms, but atomic HF calculations have been done both numerically and within the LCAO model. In approximate work, and for molecular applications, it is desirable to use basis functions that are simple in form. A polyelectron atom is quite different from a one-electron atom because of the phenomenon of shielding", for a particular electron, the other electrons partially screen the effect of the positively charged nucleus. Both Zener (1930) and Slater (1930) used very simple hydrogen-like orbitals of the form... [Pg.157]

There are two types of basis functions (also called Atomic Orbitals, AO, although in general they are not solutions to an atomic Schrodinger equation) commonly used in electronic structure calculations Slater Type Orbitals (STO) and Gaussian Type Orbitals (GTO). Slater type orbitals have die functional form... [Pg.150]

The Dirac equation automatically includes effects due to electron spin, while this must be introduced in a more or less ad hoc fashion in the Schrodinger equation (the Pauli principle). Furthermore, once the spin-orbit interaction is included, the total electron spin is no longer a good quantum number, an orbital no longer contains an integer number of a and /) spin functions. The proper quantum number is now the total angular momentum obtained by vector addition of the orbital and spin moments. [Pg.209]

The Schrodinger equation can be solved approximately for atoms with two or more electrons. There are many solutions for the wave function, ij/, each associated with a set of numbers called quantum numbers. Three such numbers are given the symbols n, , and mi. A wave function corresponding to a particular set of three quantum numbers (e.g., n = 2, = 1, mi = 0) is associated with an electron occupying an atomic orbital. From the expression for ij/y we can deduce the relative energy of that orbital, its shape, and its orientation in space. [Pg.140]

Werner Heisenberg stated that the exact location of an electron could not be determined. All measuring technigues would necessarily remove the electron from its normal environment. This uncertainty principle meant that only a population probability could be determined. Otherwise coincidence was the determining factor. Einstein did not want to accept this consequence ("God does not play dice"). Finally, Erwin Schrodinger formulated the electron wave function to describe this population space or probability density. This equation, particularly through the work of Max Born, led to the so-called "orbitals". These have a completely different appearance to the clear orbits of Bohr. [Pg.18]


See other pages where Orbital functionals Schrodinger is mentioned: [Pg.229]    [Pg.229]    [Pg.314]    [Pg.10]    [Pg.72]    [Pg.130]    [Pg.14]    [Pg.163]    [Pg.18]    [Pg.10]    [Pg.17]    [Pg.14]    [Pg.45]    [Pg.185]    [Pg.52]    [Pg.55]    [Pg.80]    [Pg.33]    [Pg.252]    [Pg.98]    [Pg.171]    [Pg.195]    [Pg.213]    [Pg.235]    [Pg.805]    [Pg.8]    [Pg.147]    [Pg.3]    [Pg.148]    [Pg.103]    [Pg.172]    [Pg.64]    [Pg.85]    [Pg.411]    [Pg.59]    [Pg.79]   
See also in sourсe #XX -- [ Pg.40 ]




SEARCH



Orbital functionals

© 2024 chempedia.info