Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optimum packed columns

Calculation of column diameter (for packed columns, this is usually based on flooding conditions, and, for plate columns, on the optimum gas velocity or the liquid-handling capacity of the plate)... [Pg.2185]

In a packed column the HETP depends on the particle diameter and is not related to the column radius. As a result, an expression for the optimum particle diameter is independently derived, and then the column radius determined from the extracolumn dispersion. This is not true for the open tubular column, as the HETP is determined by the column radius. It follows that a converse procedure must be employed. Firstly the optimum column radius is determined and then the maximum extra-column dispersion that the column can tolerate calculated. Thus, with open tubular columns, the chromatographic system, in particular the detector dispersion and the maximum sample volume, is dictated by the column design which, in turn, is governed by the nature of the separation. [Pg.392]

In the previous two chapters, equations were developed to provide the optimum column dimensions and operating conditions to achieve a particular separation in the minimum time for both packed columns and open tubular columns. In practice, the vast majority of LC separations are carried out on packed columns, whereas in GC, the greater part of all analyses are performed with open tubular columns. As a consequence, in this chapter the equations for packed LC columns will first be examined and the factors that have the major impact of each optimized parameter discussed. Subsequently open tubular GC columns will be considered in a similar manner. [Pg.395]

Each of the PLgel individual pore sizes is produced hy suspension polymerization, which yields a fairly diverse range of particle sizes. For optimum performance in a chromatographic column the particle size distribution of the beads should be narrow this is achieved by air classification after the cross-linked beads have been washed and dried thoroughly. Similarly, for consistent column performance, the particle size distribution is critical and is another quality control aspect where both the median particle size and the width of the distribution are specified. The efficiency of the packed column is extremely sensitive to the median particle size, as predicted by the van Deemter equation (4), whereas the width of the particle size distribution can affect column operating pressure and packed bed stability. [Pg.352]

Optimum flowrates are higher in packed column SFC than in LC. Flowrates as high as 5.0 mL min generally do not dramatically reduce efficiency in SFC [12]. Bier-manns and co-workers reported the separation of (3-blockers at a flowrate of 4.0 mL miiT a rate eight times higher than the flowrate recommended for LC [56]. No deterioration of column performance was observed. [Pg.312]

Correlation was found between domain size and attainable column efficiency. Column efficiency increases with the decrease in domain size, just like the efficiency of a particle-packed column is determined by particle size. Chromolith columns having ca. 2 pm through-pores and ca. 1pm skeletons show H= 10 (N= 10,000 for 10 cm column) at around optimum linear velocity of 1 mm/s, whereas a 15-cm column packed with 5 pm particles commonly shows 10,GOO-15,000 theoretical plates (7 = 10—15) (Ikegami et al., 2004). The pressure drop of a Chromolith column is typically half of the column packed with 5 pm particles. The performance of a Chromolith column was described to be similar to 7-15 pm particles in terms of pressure drop and to 3.5 1 pm particles in terms of column efficiency (Leinweber and Tallarek, 2003 Miyabe et al., 2003). Figure 7.4 shows the pressure drop and column efficiency of monolithic silica columns. A short column produces 500 (1cm column) to 2500 plates (5 cm) at high linear velocity of 10 mm/s. Small columns, especially capillary type, are sensitive to extra-column band... [Pg.156]

The optimum conditions for capillary chromatography of material heart cut from a packed column demand a highly sophisticated programming system. The software provided with the model 8700 provides this, allowing methods to be linked so that pre-column and analytical column separations are performed under optimum conditions. [Pg.66]

Supercritical fluids possess favorable physical properties that result in good behavior for mass transfer of solutes in a column. Some important physical properties of liquids, gases, and supercritical fluids are compared in Table 4.1 [49]. It can be seen that solute diffusion coefficients are greater in a supercritical fluid than in a liquid phase. When compared to HPLC, higher analyte diffusivity leads to lower mass transfer resistance, which results in sharper peaks. Higher diffusivity also results in higher optimum linear velocities, since the optimum linear velocity for a packed column is proportional to the diffusion coefficient of the mobile phase for liquid-like fluids [50, 51]. [Pg.216]

Thus, the approximate value of Hmin, for a well retained solute eluted from a well packed column and operated at the optimum linear mobile phase velocity, can be expected to be about 2.48dp, Furthermore, to the first approximation, this value will be independent of the nature of the solute, mobile phase or stationary phase. For the accurate design of the optimum columns lor a particular separation however, this approximation can not be made, nevertheless, the value of 2.48 for Hmin is a useful guide for assessing the quality of a column. [Pg.115]

The form of the HETP curve for a capillary column is the same as that for a packed column and exhibits a minimum value for (H) at an optimum velocity. [Pg.130]

It Is seen that, in a similar manner to the packed column, the optimum mobile phase velocity is directly proportional to the diffusiv ty of the solute in the mobile phase, However, in the capillary column the radius (r) replaces the particle diameter (dp) of the packed column and consequently, (u0pt) is inversely proportional to the column radius. [Pg.131]


See other pages where Optimum packed columns is mentioned: [Pg.407]    [Pg.1]    [Pg.211]    [Pg.149]    [Pg.250]    [Pg.412]    [Pg.407]    [Pg.1]    [Pg.211]    [Pg.149]    [Pg.250]    [Pg.412]    [Pg.615]    [Pg.284]    [Pg.344]    [Pg.417]    [Pg.286]    [Pg.24]    [Pg.29]    [Pg.37]    [Pg.40]    [Pg.46]    [Pg.486]    [Pg.494]    [Pg.544]    [Pg.546]    [Pg.553]    [Pg.555]    [Pg.556]    [Pg.565]    [Pg.455]    [Pg.171]    [Pg.106]    [Pg.251]    [Pg.214]    [Pg.220]    [Pg.221]    [Pg.234]    [Pg.87]    [Pg.523]   
See also in sourсe #XX -- [ Pg.226 ]




SEARCH



Columns packed, optimum velocity

Optimum, column, capacity ratio packed

Packed columns

Packed columns, packing

© 2024 chempedia.info