Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optimization, diastereomeric salt formation

As mentioned, asymmetrically pure compounds are important for many applications, and many different strategies are pursued. However, in spite of many methods being developed, the classic resolution technique of diastereomeric crystallization is still preferentially used to prepare optically active pure compounds in bulk quantity. Crystallization is commonly used in the last purification steps for solid compounds because it is the most economic technique for purification and resolution. Attempts to achieve crystallization after completed reaction without workup and extraction is called a direct isolation process. This technique can be cost-effective even though the product yield obtained is lower. Special conditions may be needed in this case, and the diastereomers can be classified into two types diastereomeric salts and covalent diastereomeric compounds, respectively. Diastereomeric salts can, for example, be used in the crystallization of a desired amine from its racemic mixture using a chiral acid. Covalent diastereomers can, on the other hand, be separated by chromatography, but are more difficult to prepare. Another advantage of crystallization is the possibility of combining in situ racemi-zation reactions and diastereomeric formation reactions to get the desired pure compounds. This crystallization-induced resolution technique is still under development because of its requirements for optimized conditions [55, 56],... [Pg.77]

After identifying the optimal etherification conditions, our attention turned to isolation of 18 in diastereomerically pure form. Diastereomers 18 and 19 were not crystalline, but, fortunately, the corresponding carboxylic acid 71 was crystalline. Saponification of the crude etherification reaction mixture of 18 and 19 with NaOH in MeOH resulted in the quantitative formation of carboxylic acids 71 and 72 (17 1) (Scheme 7.22). Since the etherification reaction only proceeded to 75-80% conversion, there still remained starting alcohol 10. Unfortunately, all attempts to fractionally crystallize the desired diastereomer 71 from the crude mixture proved unfruitful. It was reasoned that crystallization and purification of 71 would be possible via an appropriate salt. A screen of a variety of amines was then undertaken. During the screening process it was discovered that when NEt3 was added... [Pg.208]


See other pages where Optimization, diastereomeric salt formation is mentioned: [Pg.191]    [Pg.143]    [Pg.1680]    [Pg.80]    [Pg.122]    [Pg.202]    [Pg.275]    [Pg.335]    [Pg.1669]    [Pg.4]    [Pg.59]    [Pg.240]    [Pg.232]    [Pg.1667]   
See also in sourсe #XX -- [ Pg.1669 ]




SEARCH



Diastereomeric

Diastereomeric formation

Diastereomeric salt formation

Diastereomeric salts

Formate salts

Salts formation

© 2024 chempedia.info