Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optical diastereoisomers

Menthol can also be synthesized from optically active terpenoids such as (+)-citroneUal, (-)- P-pheUandrene, and (+)-3-carene. The synthesis from (+)-3-carene has already been discussed in the section on hydrocarbons. Such methods must avoid any racemization during the course of a usually multiple-step synthesis. One disadvantage of such methods is that the other menthol diastereoisomers must be equilibrated and recycled. [Pg.422]

Still s synthesis of monensin (1) is based on the assembly and union of three advanced, optically active intermediates 2, 7, and 8. It was anticipated that substrate-stereocontrolled processes could secure vicinal stereochemical relationships and that the coupling of the above intermediates would establish remote stereorelationships. Scheme 3 describes Still s synthesis of the left wing of monensin, intermediate 2. This construction commences with an aldol reaction between the (Z) magnesium bromide enolate derived from 2-methyl-2-trimethylsilyloxy-3-pentanone (21) and benzyloxymethyl-protected (/ )-/ -hydroxyisobutyraldehyde (10).2° The use of intermediate 21 in aldol reactions was first reported by Heathcock21 and, in this particular application, a 5 1 mixture of syn aldol diastereoisomers is formed in favor of the desired aldol adduct 22 (85% yield). The action of lithium diisopropylamide (LDA) and magnesium(n) bromide on 21 affords a (Z) magnesium enolate that... [Pg.235]

A different non-classical approach to the resolution of sulphoxides was reported by Mikolajczyk and Drabowicz269-281. It is based on the fact that sulphinyl compounds very easily form inclusion complexes with /1-cyclodextrin. Since /1-cyclodextrin as the host molecule is chiral, its inclusion complexes with racemic guest substances used in an excess are mixtures of diastereoisomers that should be formed in unequal amounts. In this way a series of alkyl phenyl, alkyl p-tolyl and alkyl benzyl sulphoxides has been resolved. However, the optical purities of the partially resolved sulphoxides do not exceed 22% after... [Pg.287]

The reaction of alkenylcarbene complexes and imines in the presence of a Lewis acid generates pyrroline derivatives as a result of a [3C+2S] cyclisation process [76]. This reaction has been extended to an asymmetric version by the use of chiral alkenylcarbene complexes derived from several chiral alcohols. However, the best results are found when (-)-8-phenylmenthol-derived complexes are used and catalytic amounts of Sn(OTf)2 are added to the reaction. In these conditions high levels of trans/cis selectivity are achieved and the hydrolysis of the major tram diastereoisomers allows the preparation of optically pure 2,5-disubstituted-3-pyrrolidinone derivatives (Scheme 29). [Pg.81]

Commercial chromatography silica gel promotes effectual Diels-Alder cycloaddition of optically active pyrone lactate ester (5) with benzyl vinyl ether (6), affording the endo adduct 7 in an approximately 4 1 mixture of diastereoisomers [16] (Equation 4.1). [Pg.146]

P-chiral dibenzophosphole oxide (52a) (Scheme 14) shows liquid crystalline behaviour [52], a property that is of interest in the area of electro-optical displays [53]. Chiral resolution of (52a) was achieved by column chromatographic separation of the diastereoisomers obtained following coordination of the o -benzophosphole (52b) to chiral cyclometallated palladium(II) complexes [52]. Notably, the presence of a stereogenic P-centre is sufficient to generate a chiral cholesteric phase. [Pg.143]

There are very few examples of asymmetric synthesis using optically pure ions as chiral-inducing agents for the control of the configuration at the metal center. Chiral anions for such an apphcation have recently been reviewed by Lacour [19]. For example, the chiral enantiomerically pure Trisphat anion was successfully used for the stereoselective synthesis of tris-diimine-Fe(ll) complex, made configurationally stable because of the presence of a tetradentate bis(l,10-phenanthroline) ligand (Fig. 9) [29]. Excellent diastereoselectivity (>20 1) was demonstrated as a consequence of the preferred homochiral association of the anion and the iron(ll) complex and evidence for a thermodynamic control of the selectivity was obtained. The two diastereoisomers can be efficiently separated by ion-pair chromatography on silica gel plates with excellent yields. [Pg.281]

Bohman and Allenmark resolved a series of sulphoxide derivatives of unsaturated malonic acids of the general structure 228. The classical method of resolution via formation of diastereoisomeric salts with cinchonine and quinine has also been used by Kapovits and coworkers " to resolve sulphoxides 229, 230, 231 and 232 which are precursors of chiral sulphuranes. Miko/ajczyk and his coworkers achieved optical resolution of sulphoxide 233 by utilizing the phosphonic acid moiety for salt formation with quinine. The racemic sulphinylacetic acid 234, which has a second centre of chirality on the a-carbon atom, was resolved into pure diastereoisomers by Holmberg. Racemic 2-hydroxy- and 4-hydroxyphenyl alkyl sulphoxides were separated via the diastereoisomeric 2- or 4-(tetra-0-acetyl-D-glucopyranosyloxy)phenyl alkyl sulphoxides 235. The optically active sulphoxides were recovered from the isolated diastereoisomers 235 by deacetylation with base and cleavage of the acetal. Racemic 1,3-dithian-l-oxide 236... [Pg.285]

The [6.5.5]-ring fused tricyclic motif is found in many natural products, and has therefore become an important target in synthesis. A convenient access to this structural framework is offered by a radical domino procedure published by the Nagano group [41]. This reaction of optical pure dibromoacetal 3-85 led to the desired tricycle 3-87 via 3-86 as a single diastereoisomer in a very respectable yield of 94% by applying classical radical conditions (excess tributyltin hydride/AIBN, irradia-... [Pg.234]

The hydroxymethyl-substituted phenylsulfoxide 92, also as the optically active (R) enantiomer, added to cyclopentadiene (6) at 90 °C to give a mixture of two diastereoisomers 93 in 1.6 1 ratio (Scheme 18) [19]. [Pg.25]

Cycloaddition of the nitrone 161 to the lactone 160 in boiling benzene for 6 h gave a 53 37 10 mixture of the three optically active adducts 162-164 in 66% combined yield (Scheme 9.50). Formation of the diastereoisomers 162-164 can be rationalized in terms of a highly preferred anti approach of the nitrone to the hydroxymethyl group in the transition state. The isomer ratio in the adducts was found to be dependent upon the solvent used in the reaction. Optimization of the reaction or the dia-stereoselectivity by Lewis acid catalysis failed. However, attempts to accelerate the cycloadditions by microwave irradiation, using 1,4-dioxane as the solvent, were successful and the reaction time decreased from hours to less than 10 min with only a... [Pg.324]

This sequence was obviously not amenable to a synthesis of optically active a-allokainic acid given the fact that an aminomalonate group was necessary. After unfruitful assays with menthyl esters, the Swiss group was rewarded by the discovery that the phenylmenthyl group (180) brings sufficient asymmetry to the reaction intermediate to afford products with a high percentage of favorable diastereoisomer (Scheme 35) (181). [Pg.318]

A series of thiazolo[2,3- ]isoquinolines 426, 3-one derivatives 427, and J-oxide derivatives 428 have been studied in detail as regard to their spectroscopic properties <2001T3499, 2002TA2329, 2003T1173>. These compounds have been prepared using previously reported chemistry. One of the 3-one derivatives 427 was prepared in enantiomeri-cally pure form and therefore gave access to optically enriched 428. Isolated diastereoisomers of this A-oxide were however found to be unstable and to epimerize to give a thermodynamic mixture of syn- and //-diastereoisomers. This epimerization was accompanied by a racemization (Scheme 110). [Pg.489]

Most optically active polysilanes owe their optical activity to induced main-chain chirality, as outlined above. However, backbone silicon atoms with two different side-chain substituents are chiral. Long-chain catenates, however, are effectively internally racemized by the random stereochemistry at silicon, and inherent main-chain chirality is not observed. For oligosilanes, however, inherent main-chain chirality has been demonstrated. A series of 2,3-disubstituted tetrasilanes, H3Si[Si(H)X]2SiH3 (where X = Ph, Cl, or Br), were obtained from octaphenylcyclote-trasilane and contain two chiral main-chain silicon atoms, 6.16 These give rise to four diastereoisomers the optically active S,S and R,R forms, the activity of which is equal but opposite, resulting in a racemic (and consequently optically inactive) mixture and the two meso-forms, S,R and R,S, which are optically inactive by internal compensation. It is reported that the diastereoisomers could be distinguished in NMR and GC/MS experiments. For the case of 2-phenyltetrasilane, a racemic mixture of (R)- and (A)-enantiomers was obtained. [Pg.555]

It is to be noted that geometrical isomers are now also classified as diastereoisomers. Therefore diastereomers are any stereoisomers which are not enantiomers of each other and the term is not restricted to optical isomers only. [Pg.106]

Optically active substances are preferentially adsorbed by some optically active adsorbent. Thus Broadly and Easty (1951) found wool and casein to adsorb (+) mandelic acid from its aqueous solution. Some workers also successfully carried out resolution without using an active adsorbent. The alumina was found to be suitable for resolving diastereoisomers of (-) menthyl ( ) mandelate. [Pg.152]

Since all the physical properties of two given enantiomers are the same in the absence of a chiral, or optically active, medium, their chromatographic resolution needs a different approach from the relatively simple separation of geometrical isomers, stereoisomers or positional isomers. Two methods are used. The older technique of indirect resolution, requires conversion of the enantiomers to diastereoisomers using a suitable chiral reagent, followed by separation of the diastereoisomers on a non-chiral GC or LC stationary phase. This technique has now been largely superseded by direct resolution, using either a chiral mobile phase (in LC) or a chiral stationary phase. A variety of types of chiral stationary phase have been developed for use in GC, LC and SFC(21 23). [Pg.1088]

A large number of optically active square pyramidal organometallic complexes have been described. That shown in 9 is one of a pair of diastereoisomers that can be separated by fractional crystallization into (-I-) and ( —) rotating components. It is optically stable in... [Pg.359]

Whereas racemization is the complete loss of optical activity with time, epimerization is the reversible interconversion of diastereoisomers to an equilibrium mixture which is not necessarily optically inactive. Diastereoisomers arise from the combination of the two chiral centers in 9, namely the metal centered, R and S, and the resolved (S) optically active ligand center. The diastereoisomers (RS) and (SS) differ in their properties. [Pg.367]

Products containing as ligands PPh(l-Np)2 have two centers of chirality and two racemic diastereoisomers have been separated. The reaction of optically active PMePh 1 -Np leads to a racemic mixture since the phosphine is racemized under UV irradiation ... [Pg.93]


See other pages where Optical diastereoisomers is mentioned: [Pg.332]    [Pg.76]    [Pg.285]    [Pg.295]    [Pg.298]    [Pg.325]    [Pg.186]    [Pg.37]    [Pg.140]    [Pg.53]    [Pg.279]    [Pg.283]    [Pg.283]    [Pg.295]    [Pg.298]    [Pg.325]    [Pg.336]    [Pg.424]    [Pg.341]    [Pg.117]    [Pg.190]    [Pg.143]    [Pg.284]    [Pg.101]    [Pg.453]    [Pg.454]    [Pg.108]    [Pg.66]   
See also in sourсe #XX -- [ Pg.248 , Pg.257 , Pg.294 , Pg.310 ]




SEARCH



Diastereoisomers

© 2024 chempedia.info