Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

One-ended

The coin-tap test is a widely used teclinique on thin filament winded beams for detection of disbonded and delaminated areas. However, since the sensitivity of this teclinique depends not only on the operator but also on the thickness of the inspected component, the coin-tap testing technique is most sensitive to defects positioned near the surface of the laminate. Therefore, it was decided to constructed a new scaimer for automated ultrasonic inspection of filament winded beams. A complete test rig illustrated in figure 6 was constructed in order to reduce the scanning time. While the beam rotates the probe is moved from one end to the other of the beam. When the scarming is complete it is saved on diskette and can then be evaluated on a PC. The scanner is controlled by the P-scan system, which enables the results to be presented in three dimensions (Top, Side and End view). [Pg.983]

Klein and co-workers have documented the remarkable lubricating attributes of polymer brushes tethered to surfaces by one end only [56], Studying zwitterionic polystyrene-X attached to mica by the zwitterion end group in a surface forces apparatus, they found /i < 0.001 for loads of 100 and speeds of 15-450 nm/sec. They attributed the low friction to strong repulsions existing between such polymer layers. At higher compression, stick-slip motion was observed. In a related study, they compared the friction between polymer brushes in toluene (ji < 0.005) to that of mica in pure toluene /t = 0.7 [57]. [Pg.447]

Figure Al.2.11. Resonant collective inodes of the 2 1 Fenni resonance system of a coupled stretch and bend with an approximate 2 1 frequency ratio. Shown is one end of a syimnetric triatomic such as H2O. The nomial stretch and bend modes are superseded by the horseshoe-shaped modes shown in (a) and (b). These two modes have different frequency, as further illustrated in figure Al.2.12. Figure Al.2.11. Resonant collective inodes of the 2 1 Fenni resonance system of a coupled stretch and bend with an approximate 2 1 frequency ratio. Shown is one end of a syimnetric triatomic such as H2O. The nomial stretch and bend modes are superseded by the horseshoe-shaped modes shown in (a) and (b). These two modes have different frequency, as further illustrated in figure Al.2.12.
In 1960, Harrick demonstrated that, for transparent substrates, absorption spectra of adsorbed layers could be obtained using internal reflection [42]. By cutting the sample in a specific trapezoidal shape, the IR beam can be made to enter tlirough one end, bounce internally a number of times from the flat parallel edges, and exit the other end without any losses, leading to high adsorption coeflScients for the species adsorbed on the external surfaces of the plate (Irigher than in the case of external reflection) [24]. This is the basis for the ATR teclmique. [Pg.1784]

Success of depositing compounds where an 18-carbon chain was attached to one end of an azobenzene group and various different hydrophilic groups attached to the other end has been reported in X and Z mode [52] and piezo-and pyroelectric effects were demonstrated. [Pg.2616]

Determination of Boiling-points. The following alternative methods are recommended, (a) Draw one drop of the liquid into a capillary tube so that the drop is about i cm. from one end. [Pg.60]

For the filtration of very small quantities of crystals, the simple apparatus shown in Fig. 46 is often used. It consists of a fine glass rod (sometimes termed a filtration nail ) which is flattened at one end, the flattened surface being preferably roughened. It fits as shown into a small funnel which replaces F (Fig. 45). A circular piece of filter-paper is cut e-g.y with a clean sharp cork-borer) so as to fit completely and snugly over the flat end. After draining, the nail is raised and the filter-paper and crystals are removed with forceps and dried. [Pg.67]

Sublimation. This is a most useful process for small-scale work as the losses are comparatively small. This can be performed (a) In a long narrow tube sealed at one end. The material is shaken to the closed end of the tube, which is then inserted horizontally in a metal-heating block (Fig. 50) (b) In the cold-finger device (Fig. 35, p. 62)-... [Pg.69]

Microscope appearance. Place a small amount of dry starch on a microscope slide, add a drop of water, cover with a slip and examine under the microscope. Characteristic oval grains are seen which have concentric rings round a hilum which is towards one end of the grain. Run a drop of very dilute iodine solution under the slip from a fine dropping-tube the grains become blue. [Pg.370]

A slender vertieal filament of negligible mass supports a 0.200-g mass at one end and is fixed at the other end. A foree of 0.0800 N displaees the mass 0.0200 m. The mass exeeutes simple harmonie motion as the filament bends. What is the bending eonstant KB of the filament What is the frequeney v of the motion in Hz What is the period t of oseillation ... [Pg.129]

Push one end of a length of 20 cm. of stout copper wire into a cork (this wUl serve as a holder) at the other end make two or three turns about a thin glass rod. Heat the coil in the outer mantle of a Bunsen dame until it ceases to impart any colour to the dame. Allow the wire to cool somewhat and, while still warm, dip the coil into a small portion of the substance to be tested and heat again in the non-luminous dame. If the compound contains a halogen element, a green or bluish-green dame will be observed (usually after the initial smoky dame has disappeared). Before using the wire for another compound, heat it until the material from the previous test has been destroyed and the dame is not coloured. [Pg.290]


See other pages where One-ended is mentioned: [Pg.69]    [Pg.300]    [Pg.156]    [Pg.69]    [Pg.240]    [Pg.4]    [Pg.9]    [Pg.403]    [Pg.1620]    [Pg.2292]    [Pg.2609]    [Pg.2609]    [Pg.2621]    [Pg.2836]    [Pg.57]    [Pg.135]    [Pg.443]    [Pg.447]    [Pg.480]    [Pg.562]    [Pg.570]    [Pg.660]    [Pg.2]    [Pg.40]    [Pg.255]    [Pg.323]    [Pg.417]    [Pg.471]    [Pg.471]    [Pg.475]    [Pg.476]    [Pg.212]    [Pg.57]    [Pg.76]    [Pg.82]    [Pg.85]    [Pg.86]    [Pg.145]    [Pg.204]    [Pg.667]   
See also in sourсe #XX -- [ Pg.88 ]




SEARCH



Fiber one-ended

© 2024 chempedia.info