Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefins oxetanes

Carbonyl compound Olefin Oxetane (Yield, % ) Comments Refs. [Pg.354]

In the NTC region, back-bitiag reactioas appear to be respoasible for the formation of cycHc ethers (60,165—170). la additioa to oxetanes and tetrahydrofurans, tetrahydropyrans, oxiranes, and others are also observed (60,96,169) the tetrahydrofurans are favored. 0-Heterocycle yields of 25 to 30% have been reported for / -pentane (165,171). Conjugate and other olefins are also prominent products ia this regioa (60,169—172). [Pg.342]

Four-membered heterocycles are easily formed via [2-I-2] cycloaddition reac tions [65] These cycloaddmon reactions normally represent multistep processes with dipolar or biradical intermediates The fact that heterocumulenes, like isocyanates, react with electron-deficient C=X systems is well-known [116] Via this route, (1 lactones are formed on addition of ketene derivatives to hexafluoroacetone [117, 118] The presence of a trifluoromethyl group adjacent to the C=N bond in quinoxalines, 1,4-benzoxazin-2-ones, l,2,4-triazm-5-ones, and l,2,4-tnazin-3,5-diones accelerates [2-I-2] photocycloaddition processes with ketenes and allenes [106] to yield the corresponding azetidine derivatives Starting from olefins, fluonnaied oxetanes are formed thermally and photochemically [119, 120] The reaction of 5//-l,2-azaphospholes with fluonnated ketones leads to [2-i-2j cycloadducts [121] (equation 27)... [Pg.853]

The mechanism of the Patemo-Biichi reaction is not well understood, and while a general pathway has been proposed and widely aceepted, it is apparent that it does not represent the full scope of reactions. Biichi originally proposed that the reaction occurred by light catalyzed stimulation of the carbonyl moiety 1 into an excited singlet state 4. Inter-system crossing then led to a triplet state diradical 5 which could be quenched by olefinic radical acceptors. Intermediate diradical 6 has been quenched or trapped by other radical acceptors and is generally felt to be on the reaction path of the large majority of Patemo-Biichi reactions. Diradical 6 then recombines to form product oxetane 3. [Pg.44]

The reaction of carbonyl compounds to olefins often yields products difficult to obtain synthetically by other routes. The excellent yields obtainable under proper conditions make this reaction of definite preparative interest. Examples of some synthetic applications of oxetane formation follow ... [Pg.100]

Acetylcyanide adds to olefins to form oxetanes having a useful functional group directly attached to the trimethylene oxide ring(107) ... [Pg.100]

Another related mechanistic proposal is that oxetane cleavage can produce the excited olefin. This is based on the exchange results shown in the following scheme<88) ... [Pg.201]

Aryl ketones are often used to effect cis and tram isomerization of olefins.(118-ia0) Although this, in some cases, can be viewed as an energy transfer process where the ketone triplet transfers its energy to the olefin, which then isomerizes, the failure of noncarbonyl sensitizers of comparable triplet energy to isomerize the olefins suggests that a process other than energy transfer may be involved. Schenck and Steinmetz<118) suggested that isomerization results from decomposition of a biradical carbonyl-olefin adduct similar to that involved in oxetane formation ... [Pg.401]

As is the case with aryl carbonyls previously studied, aliphatic carbonyls add to olefins to form oxetanes. The picture in this case is far more complicated, however, primarily due to the increased importance of singlet state carbonyl addition to the olefin. In Chapter 1 we saw that in an n->v ... [Pg.401]

Irradiation of mixtures of acetone and the electron-poor olefin cis- or frmy-dicyanoethylene leads to the stereospecific formation of oxetane(iaa) ... [Pg.402]

That oxetane formation results from a singlet state reaction follows from the following evidence (a) Acetone fluorescence is quenched by addition of the olefin, (b) oxetane formation is relatively insensitive to piperylene, and (c) cis-trans isomerization of the olefin is quenched at high olefin concentrations but oxetane formation is not affected. Since oxetane formation was... [Pg.402]

A photosensitized dimerization of an isolated olefin, norbomene, has been reported by Scharf and Korte.<3) Irradiation in acetone or in the presence of acetophenone (Et = 74 kcal/mole) produced dimers (5) and (6) as major products. However, benzophenone (Et = 69 kcal/mole) failed to sensitize the reaction to (5) and (6), but in ether solution led to the quantitative formation of benzpinacol and in benzene to the oxetane (7) in 80% yield. Sensitizers of intermediate energy, such as xanthone (Et — 72 kcal/mole), demonstrated a competition between energy transfer to form triplet norbomene and cycloaddition to form the oxetane ... [Pg.518]

The photoinduced [2 + 2] cycloaddition of carbonyl acceptors with electron-rich olefins leads to oxetanes (Paterno-Biichi reaction) with high regio- and stereoselectivities (equation 25). [Pg.214]

Mattay et al.5i suggested from the photoreaction of biacetyl with highly electron-rich olefins that an initial electron transfer from an electron-rich olefin to photoexcited ketone is the key step in the oxetane formation via the ion-radical pair (equation 26). [Pg.215]

The scope of the Patemo-Buchi cycloaddition has been widely expanded for the oxetane synthesis from enone and quinone acceptors with a variety of olefins, stilbenes, acetylenes, etc. For example, an intense dark-red solution is obtained from an equimolar solution of tetrachlorobenzoquinone (CA) and stilbene owing to the spontaneous formation of 1 1 electron donor/acceptor complexes.55 A selective photoirradiation of either the charge-transfer absorption band of the [D, A] complex or the specific irradiation of the carbonyl acceptor (i.e., CA) leads to the formation of the same oxetane regioisomers in identical molar ratios56 (equation 27). [Pg.215]

This article will only discuss two particular kinds of photocycloaddition reactions, the photodimerization or cross-cycloaddition of two olefins to yield a cyclobutane derivative, and the photoreaction of an olefin with a carbonyl compound to give an oxetane, Eq. 1 and Eq. 2. The inportance of substituent effects in reactions of these types is pointed... [Pg.144]

The photocycloaddition of an aldehyde or ketone with an olefin to yield an oxetane was reported by Paterno and Chieffi in 1909. 58> Contemporary studies on the synthetic utility and mechanistic features were initiated nearly 50 years later by Biichi et al. 59) Two review articles summarizing synthetic aspects of Paterno-Biichi reactions have been published 6.12)) and mechanistic studies have been reviewed several times. 6,38,60-62) The reaction involves the addition to olefin of a photo-excited carbonyl moiety. This circumstance makes it advantageous to review this reaction before a discussion of olefin-olefin additions, because the solution photochemistry of carbonyl compounds is probably better understood than any other aspect of organic photochemistry. Many of the reactions of carbonyl compounds have been elucidated during studies of the important phenomena of energy transfer and photosensitization. 63-65)... [Pg.149]

A clear division of Paterno-Biichi reactions into several distinct categories is possible on the basis of the type of reacting carbonyl compound (alkyl or aromatic), the excited state responsible for reaction (n—71 or Ti—n, singlet or triplet), and the type of olefin (electron deficient or electron-rich). Some examples of these reactions are given in Eqs. 7—11, where only the oxetane products are shown. [Pg.150]

The quantum yields for oxetane formation have not been determined in every case, and only a few relative rate constants are known. The reactivities of singlet and triplet states of alkyl ketones are very nearly equal in attack on electron rich olefins. 72> However, acetone singlets are about an order of magnitude more reactive in nucleophilic attack on electron-deficient olefins. 61 > Oxetane formation is competitive with a-cleavage, hydrogen abstraction and energy-transfer reactions 60 64> so the absolute rates must be reasonably high. Aryl aldehydes and ketones add to olefins with lower quantum yields, 66> and 3n-n states are particularly unreactive. 76>... [Pg.151]

Alkenals also add to simple olefins to yield oxetanes, Eq. 43. Using acetaldehyde and the isomeric 2-butenes the quantum yield is low, and... [Pg.163]

This chapter deals with [2 + 2]cycloadditions of various chromophors to an olefinic double bond with formation of a four-membered ring, with reactions proceeding as well in an intermolecular as in an intramolecular pattern. Due to the variety of the starting materials available (ketones, enones, olefins, imines, thioketones, etc.. . .), due to the diversity of products obtained, and last but not least, due to the fact that cyclobutanes and oxetanes are not accessible by such a simple one-step transformation in a non-photo-chemical reaction, the [2+2]photocycloaddition has become equivalent to the (thermal) Diels-Alder reaction in importance as for ring construction in organic synthesis. [Pg.52]

Mechanistic evidence indicates 450,451> that the triplet enone first approaches the olefinic partner to form an exciplex. The next step consists in the formation of one of the new C—C bonds to give a 1,4-diradical, which is now the immediate precursor of the cyclobutane. Both exciplex and 1,4-diradical can decay resp. disproportionate to afford ground state enone and alkene. Eventually oxetane formation, i.e. addition of the carbonyl group of the enone to an olefin is also observed452. Although at first view the photocycloaddition of an enone to an alkene would be expected to afford a variety of structurally related products, the knowledge of the influence of substituents on the stereochemical outcome of the reaction allows the selective synthesis of the desired annelation product in inter-molecular reactions 453,454a b). As for intramolecular reactions, the substituent effects are made up by structural limitations 449). [Pg.57]

Oxetanes are the cycloadducts from a carbonyl compound and an olefin. This one step photochemical formation of a four membered ring heterocycle has been named the Paterno-Buchi reaction 489a> b). Oxetanes are important synthetic intermediates as they can fragment into the carbonyl-olefin pair by which they were not formed (a so termed carbonyl-olefin metathesis). Two examples of such oxetan cracking reactions are shown below in (4.76)490) and in (4.77)491) in this last example the oxetane was used as a precursor for the pheromone E-6-nonenol,... [Pg.66]

Polycyclic oxetanes are obtained in good yields in intramolecular carbonyl-olefin cycloadditions, in an analogous way as the corresponding alicyclic systems are formed in intramolecular enone-olefin additions. Two applications are given in (4.78)492) and in (4.79)493). [Pg.67]

The formation of thietanes from thiones and olefins has been less exploited for synthetic purposes than the corresponding oxetane-forming reaction. It should be remarked that thiocarbonyl compounds very often undergo efficient photoreactions from the second excited singlet state S2 U4). One interesting synthetic application is found in the photochemical preparation of quinolines from N-thioamides (4.84)498). The primary photochemical step is assumed to be the intramolecular thietane formation. [Pg.68]

Biichi, G. Inman, C. G. Lipinsky, E. S. J. Am. Chem. Soc. 1954, 76,4327. George H. Biichi (1921—1998) was bom in Baden, Switzerland. He was a professor at MET when he elucidated the structure of oxetanes, the products from the light-catalyzed addition of carbonyl compounds to olefins, which had been observed by E. Paterno in 1909. Btichi died of heart failure while hiking with his wife in his native Switzerland. [Pg.447]

In the context of photoinduced [2 -I- 2] cycloadditions, the reaction of an olefin with a carbonyl center, known as the Patemo-Biichi reaction, has to be mentioned. The resulting oxetanes are thereby produced with high regioselectivity and stereoselectivity. [Pg.217]


See other pages where Olefins oxetanes is mentioned: [Pg.397]    [Pg.256]    [Pg.181]    [Pg.397]    [Pg.256]    [Pg.181]    [Pg.292]    [Pg.294]    [Pg.659]    [Pg.45]    [Pg.98]    [Pg.102]    [Pg.103]    [Pg.224]    [Pg.296]    [Pg.304]    [Pg.304]    [Pg.304]    [Pg.397]    [Pg.398]    [Pg.401]    [Pg.402]    [Pg.10]    [Pg.102]    [Pg.151]    [Pg.297]    [Pg.435]   
See also in sourсe #XX -- [ Pg.16 ]




SEARCH



Carbonyls oxetane formation with olefins

Oxetane

Oxetanes

Oxetans

The Formation of Oxetanes from Carbonyls and Olefins

© 2024 chempedia.info