Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefins cycloadditions and

With the hypothesis that allene-olefin cycloadditions and methylenecyclobutane rearrangements have a common intermediate comes the prediction that common stereochemical modes for the various rotations involved will prevail. The cycloaddition model outlined above involves disrotatory ring closure with the same sense of rotation about C(4)C(5) and C(5)C(2). For the methylenecyclobutane rearrangement, the same stereochemistry is anticipated for the reverse reaction. [Pg.7]

The bimetallic tetraene isoxazoline 64 was prepared through a highly diastereoselective intermolecular nitrile oxide-olefin cycloaddition and used as an intermediate in the synthesis of the C7-C24 segment of macrolactin A. The addition of the nitrile oxide on the less hindered face of the s-trans triene rotomer of 63 was the key to controlling the absolute configuration of the new formed stereocenter <03S2064>. [Pg.288]

To have a rough idea of the potential of the method, please have a look to the syntheses below that are among those considered typical in a recent book (Scheme 1). These are a cyclization to hydroxycyclobutane via H-abstraction, a 2 + 2 alkene cycloaddition, a "meta" benzene-olefin cycloaddition, and a dye sensitized addition of singlet oxygen." Please consider whether there are facile thermal alternatives to these straightforward photochemical reactions. [Pg.175]

Developments in the field of stereoselective 1,3-dipolar cycloadditions and their synthetic applications are outlined in Sections 18.2 to 18.4 [22, 23, 28-34]. Subsequently, related [2-i-3]-cycloadditions with 1,3-diradicals and trimethylenemethane equivalents that furnish the corresponding five-membered carbocycles are covered (Section 18.5) [38—41]. The chapter closes with a collection of [2-i-2]-cycloadditions involving ketenes (Section 18.6) [19, 35, 36], photochemical olefin cycloadditions, and Paterno-Biichi reactions (Section 18.7) [36, 37],... [Pg.590]

The highest priority ring disconnective T-goals for 272 are those which disconnect a cocyclic 5,5-fusion bond and offexendo bond pair. The internal ketene-olefin cycloaddition in tactical combination with the Baeyer-Villiger transform is well suited to the double disconnection of such a cyclopentane-y-lactone ring pair. [Pg.91]

Heterocyclic enamines often undergo two-step 1,3 cycloaddition with methyl vinyl ketone. This involves electrophilic attacks by an olefinic carbon and by a carbonyl carbon (24,25). For example, 1,2-dimethyl-Zl -pyrroline (14), when treated with methyl vinyl ketone, produces 1,6-dimethyl-2,3,4,5-tetrahydroindole (15) (24). The requirement which must be met so that this type of cyclization reaction can take place is that the a position of the heterocyclic enamine be carbon substituted. This provides... [Pg.216]

Asymmetric bias generated by protected vicinal diol controller and its application to asymmetric nitrone-olefin cycloaddition reactions 98YGK86. [Pg.253]

Intramolecular dipolar azide-olefin cycloaddition of 723 took place upon heating in benzene to afford 724 (83JA3273). An alternative rearrangement process can take place upon photolysis of 724 to give 725. Mesylation of 4-(3-hydroxypropyl)-2,4,6-trimethyl-2,5-cyclohexadiene-l-one (78JA4618) and subsequent treatment with sodium azide in DMF afforded the respective azide 726 which underwent intramolecular cycloaddition to afford the triazoline 727 (83JOC2432). Irradiation of 727 gave the triazole derivative 728 (Scheme 126). [Pg.164]

Singlet molecular oxygen ( A is an electron acceptor powerful enough to react with olefins in the pseudoexcitation band. The [2h-2] cycloaddition and ene reactions and the stereoselectivities are reviewed in this subsection. [Pg.37]

Although nitrile oxide cycloadditions have been extensively investigated, cycloadditions of silyl nitronates, synthetic equivalent of nitrile oxides in their reactions with olefins, have not received similar attention. Since we found that the initial cycloadducts, hl-silyloxyisoxazolidines, are formed with high degree of stereoselectivity and can be easily transformed into isoxazolines upon treatment with acid or TBAF, intramolecular silylnitronate-olefin cycloadditions (ISOC) have emerged as a superior alternative to their corresponding INOC reactions [43]. Furthermore, adaptability of ISOC reactions to one-pot tandem sequences involving 1,4-addition and ISOC as the key steps has recently been demonstrated [44]. [Pg.21]

Intramolecular nitrone cycloadditions often require higher temperatures as nitrones react more sluggishly with alkenes than do nitrile oxides and the products contain a substituent on nitrogen which may not be desirable. Conspicuously absent among various nitrones employed earlier have been NH nitrones, which are tautomers of the more stable oximes. However, Grigg et al. [58 a] and Padwa and Norman [58b] have demonstrated that under certain conditions oximes can undergo addition to electron deficient olefins as Michael acceptors, followed by cycloadditions to multiple bonds. We found that intramolecular oxime-olefin cycloaddition (lOOC) can occur thermally via an H-nitrone and lead to stereospecific introduction of two or more stereocenters. This is an excellent procedure for the stereoselective introduction of amino alcohol functionality via N-0 bond cleavage. [Pg.30]

It was possible to effect lOOC reaction leading to six-membered rings, e.g., 220 in low yield (ca. 20%) by heating the reaction mixture at 110 °C (Eq. 22) [59]. In fact, Oppolzer and Keller [60] had previously reported the lOOC reaction of 219 to 220 in 20% yield by heating at 110 °C. Furthermore, the scope of these oxime-olefin cycloadditions has been extended to ketoximes, e.g., 221. The latter was prepared by amination of a-bromoacetophenone with allylamine 214a. Heating of 221 at 110 °C for 8 h led to cycloaddition with formation of the fused pyrrolidine 222 in 88% yield. As in Scheme 25, only one... [Pg.31]

Dipolar cycloaddition of azides with olefins provides a convenient access to triazolines, cyclic imines, and aziridines and hence is a valuable technique in heterocyclic synthesis. For instance, tricyclic -lactams 273 - 276 have been synthesized using the intramolecular azide-olefin cycloaddition (lAOC) methodology (Scheme 30) [71]. [Pg.39]

The products consistently exhibit retention of the original olefin stereochemistry and are probably formed in a concerted manner. An exciplex formed from singlet excited benzene and the ground state olefin (allowing relaxation of the orbital symmetry requirements for concerted 1,3- and 1,4-cycloaddition) has been proposed to account for these products/126 Srinivasan and Hill reported an unusual photochemical addition to benzene to form cycloadduct (52)<74) ... [Pg.533]

Carboalkoxymethylenes, like acylmethylenes, undergo rearrangement to ketenes as well as the olefin addition and C—H insertion reactions characteristic of methylenes.<37> Thus the photolysis of ethyl diazoacetate in olefinic solvents leads to substantial yields of products, which can be rationalized in terms of a Wolff rearrangement of the carboethoxymethylene followed by cycloaddition of the resulting ethoxyketene to the olefin ... [Pg.555]

From the copper-catalyzed reaction of methyl 2-diazo-3-oxobutyrate 57 a with Z-3-methoxystyrene, dihydrofuran 59 (formed with retention of olefin configuration) and butadienol 60 result130). Such an acyclic by-product also occurs when benzofuran is the cycloaddition partner. In that case, however, regioisomers 61 and 62, arising from the connection of the former diazo carbon with either the 2- or 3-position of the heterocycle, are obtained similarly, two isomeric dihydrofurans 63 and 64 are formed under Cu(hfacac)2 catalysis130). [Pg.117]

Polycyclic oxetanes are obtained in good yields in intramolecular carbonyl-olefin cycloadditions, in an analogous way as the corresponding alicyclic systems are formed in intramolecular enone-olefin additions. Two applications are given in (4.78)492) and in (4.79)493). [Pg.67]

Certain specific steric effects are operative on intramolecular nitrile oxide— olefin cycloadditions. These effects are governed by both ring size and character of substituents. Thus, cycloadditions to the exomethylene group are successful with substituted methylenecyclohexanones 334 (m = 1, 2 n = 2) and gave tricyclic 335 (m = 1, 2), but do not occur with methylenecyclopentanones 334 (m = 1, 2, 3 n = 1). Activation energies calculated by molecular mechanics are consistent with these results. Cleavage of 335 (m = 2) by Raney Ni gives cA-decalone 336 (403). [Pg.71]

Intramolecular nitrile oxide—olefin cycloaddition of oxazolidine and thiazoli-dine oximes 407 (R = H, Me R1 =H, Me X = 0, S n = 1,2) proceed stereose-lectively, yielding tricyclic fused pyrrolidines and piperidines. Thus, 407 (n =2 R = H R1 =Me X=S) has been oxidized to the nitrile oxides with sodium hypochlorite, in the presence of triethylamine in methylene chloride, to give the isoxazolothiazolopyridine 408 in 68% yield. Reduction of 408 with lithium aluminum hydride affords mercaptomethylmethylpiperidine 409 in 24% yield (448). [Pg.87]

A total synthesis of the sesquiterpene ( )-illudin C 420 has been described. The tricyclic ring system of the natural product is readily quickly assembled from cyclopropane and cyclopentene precursors via a novel oxime dianion coupling reaction and a subsequent intramolecular nitrile oxide—olefin cycloaddition (463). [Pg.91]

Diastereoselective intermolecular nitrile oxide—olefin cycloaddition has been used in an enantioselective synthesis of the C(7)-C(24) segment 433 of the 24-membered natural lactone, macrolactin A 434 (471, 472). Two (carbonyl)iron moieties are instrumental for the stereoselective preparation of the C(8)-C(ii) E,Z-diene and the C(i5) and C(24) sp3 stereocenters. Also it is important to note that the (carbonyl)iron complexation serves to protect the C(8)-C(ii) and C(i6)-C(i9) diene groups during the reductive hydrolysis of an isoxazoline ring. [Pg.95]

Recently, it has been demonstrated (495) that the [3+ 2]-cycloaddition reactions of 3-bromo-substituted six-membered cyclic nitronates (400), which are constructed from olefins (401) and l-bromo-l-nitro-2,4/-methoxyphenylethylene, with olefins (402) produce 3-vinylisoxazolines (403) or five-membered cyclic nitronates (404) in good yields (Scheme 3.221). [Pg.652]

If the cycloaddition and cycloreversion steps occurred under the same conditions, an equilibrium would establish and a mixture of reactant and product olefins be obtained, which is a severe limitation to its synthetic use. In many cases, however, the two steps can very well be separated, with the cycloreversion under totally different conditions often showing pronounced regioselectivity, e.g. for thermodynamic reasons (product vs. reactant stability), and this type of olefin metathesis has been successfully applied to organic synthesis. In fact, this aspect of the synthetic application of four-membered ring compounds has recently aroused considerable attention, as it leads the way to their transformation into other useful intermediates. For example aza[18]annulene (371) could be synthesized utilizing a sequence of [2 + 2] cycloaddition and cycloreversion. (369), one of the dimers obtained from cyclooctatetraene upon heating to 100 °C, was transformed by carbethoxycarbene addition to two tetracyclic carboxylates, which subsequently lead to the isomeric azides (368) and (370). Upon direct photolysis of these, (371) was obtained in 25 and 28% yield, respectively 127). Aza[14]annulene could be synthesized in a similar fashion I28). [Pg.138]

Compounds containing M=C bonds can undergo [2+2] cycloadditions, and this reaction allows olefin metathesis to occur. The Mo=C bond [2+2] cycloadds to the C4=C5 bond to give a metallacyclobutane A retro [2+2] cycloaddition cleaves the C4=C5 bond and makes a Mo=C4 bond. This new bond cycloadds across another C4-C5 bond to make a new C4-C5 bond retro [2+2] cycloaddition cleaves the C4=C5 bond and completes the formation of the C4=C5 bond. The process repeats itself many times over to make the polymer. No change in Mo s oxidation state or d electron count occurs in any step. [Pg.184]


See other pages where Olefins cycloadditions and is mentioned: [Pg.40]    [Pg.159]    [Pg.40]    [Pg.159]    [Pg.183]    [Pg.286]    [Pg.288]    [Pg.290]    [Pg.225]    [Pg.235]    [Pg.270]    [Pg.259]    [Pg.153]    [Pg.47]    [Pg.116]    [Pg.238]    [Pg.143]    [Pg.148]    [Pg.152]    [Pg.321]    [Pg.60]    [Pg.1]    [Pg.145]    [Pg.223]    [Pg.112]    [Pg.112]    [Pg.320]   
See also in sourсe #XX -- [ Pg.50 , Pg.51 , Pg.52 , Pg.53 , Pg.54 ]




SEARCH



Cycloaddition and

Olefins, cycloadditions

© 2024 chempedia.info