Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefin hydrogenation rhodium-catalyzed

Rhodium catalyzed carbonylations of olefins and methanol can be operated in the absence of an alkyl iodide or hydrogen iodide if the carbonylation is operated in the presence of iodide-based ionic liquids. In this chapter, we will describe the historical development of these non-alkyl halide containing processes beginning with the carbonylation of ethylene to propionic acid in which the omission of alkyl hahde led to an improvement in the selectivity. We will further describe extension of the nonalkyl halide based carbonylation to the carbonylation of MeOH (producing acetic acid) in both a batch and continuous mode of operation. In the continuous mode, the best ionic liquids for carbonylation of MeOH were based on pyridinium and polyalkylated pyridinium iodide derivatives. Removing the highly toxic alkyl halide represents safer, potentially lower cost, process with less complex product purification. [Pg.329]

Historically, the rhodium catalyzed carbonylation of methanol to acetic acid required large quantities of methyl iodide co-catalyst (1) and the related hydrocarboxylation of olefins required the presence of an alkyl iodide or hydrogen iodide (2). Unfortunately, the alkyl halides pose several significant difficulties since they are highly toxic, lead to iodine contamination of the final product, are highly corrosive, and are expensive to purchase and handle. Attempts to eliminate alkyl halides or their precursors have proven futile to date (1). [Pg.329]

Incorporation of rhodium triphenylphosphine moieties into carboranes has led to HRh(C2B9Hn)(PPh3)2 complexes, which are formally hydri-dorhodium(III) dicarbollides and which catalyze olefin hydrogenation under mild conditions (527). Iridium and ruthenium analogs are also known, including complexes with carboranylphosphine ligands, e.g., HRuCl(PPh3)(l-P(CH3)2-l,2-C2B, Hn]2 (,527-530). [Pg.385]

Directed intramolecular transfer hydrogenations are catalyzed by rhodium complexes with the pendant alkene acting as an internal sacrificial olefin (Equation (39)). [Pg.115]

Table 36.3 Use of mixtures of monodentate phosphonites and or phosphites in the rhodium-catalyzed hydrogenation of substituted olefins.3 ... Table 36.3 Use of mixtures of monodentate phosphonites and or phosphites in the rhodium-catalyzed hydrogenation of substituted olefins.3 ...
Optically active aldehydes are important precursors for biologically active compounds, and much effort has been applied to their asymmetric synthesis. Asymmetric hydroformylation has attracted much attention as a potential route to enantiomerically pure aldehyde because this method starts from inexpensive olefins and synthesis gas (CO/H2). Although rhodium-catalyzed hydrogenation has been one of the most important applications of homogeneous catalysis in industry, rhodium-mediated hydroformylation has also been extensively studied as a route to aldehydes. [Pg.384]

Chiral l,T-diphosphetanylferrocene Et-FerroTANE serves as an effective ligand for the rhodium-catalyzed hydrogenation of y9-aryl- and /9-alkyl-substituted monoamido ita-conates (Eqs. 19 and 20) [54]. The Et-DuPhos-Rh catalyst was utihzed for the asymmetric hydrogenation of the trisubstituted olefin derivative in the preparation of an important intermediate for the drug candoxatril (>99% ee) [110]. [Pg.19]

Rhodium(II) acetate catalyzes C—H insertion, olefin addition, heteroatom-H insertion, and ylide formation of a-diazocarbonyls via a rhodium carbenoid species (144—147). Intramolecular cyclopentane formation via C—H insertion occurs with retention of stereochemistry (143). Chiral rhodium (TT) carboxamides catalyze enantioselective cyclopropanation and intramolecular C—N insertions of CC-diazoketones (148). Other reactions catalyzed by rhodium complexes include double-bond migration (140), hydrogenation of aromatic aldehydes and ketones to hydrocarbons (150), homologation of esters (151), carbonylation of formaldehyde (152) and amines (140), reductive carbonylation of dimethyl ether or methyl acetate to 1,1-diacetoxy ethane (153), decarbonylation of aldehydes (140), water gas shift reaction (69,154), C—C skeletal rearrangements (132,140), oxidation of olefins to ketones (155) and aldehydes (156), and oxidation of substituted anthracenes to anthraquinones (157). Rhodium-catalyzed hydrosilation of olefins, alkynes, carbonyls, alcohols, and imines is facile and may also be accomplished enantioselectively (140). Rhodium complexes are moderately active alkene and alkyne polymerization catalysts (140). In some cases polymer-supported versions of homogeneous rhodium catalysts have improved activity, compared to their homogenous counterparts. This is the case for the conversion of alkenes direcdy to alcohols under oxo conditions by rhodium—amine polymer catalysts... [Pg.181]

Previous work has shown that the electronic characteristics of the benzene substituent in triarylphosphine chlororhodium complexes have a marked influence on the rate of olefin hydrogenation catalyzed by these compounds. Thus, in the hydrogenation of cyclohexene using L3RhCl the rate decreased as L = tri-p-methoxyphenylphosphine > triphenylphosphine > tri-p-fluorophenylphosphine (14). In the hydrogenation of 1-hexene with catalysts prepared by treating dicyclooctene rhodium chloride with 2.2-2.5 equivalents of substituted triarylphosphines, the substituent effect on the rate was p-methoxy > p-methyl >> p-chloro (15). No mention could be found of any product stereochemistry studies using this type of catalyst. [Pg.125]

The reaction pathway for rhodium-catalyzed asymmetric hydrogenation of enamides is described and intermediates are defined in solution by P-31, C-13, and H-l NMR. The stereochemical relationship of bound enamide to rhodium alkyl and to the product of hydrogenation is demonstrated. Experiments involving the addition of HD to a variety of olefins in the presence of rhodium biphosphine catalysts suggest that a concerted addition of hydrogen to olefin and metal may occur in appropriate cases. [Pg.351]

Abstract The applications of hybrid DFT/molecular mechanics (DFT/MM) methods to the study of reactions catalyzed by transition metal complexes are reviewed. Special attention is given to the processes that have been studied in more detail, such as olefin polymerization, rhodium hydrogenation of alkenes, osmium dihydroxylation of alkenes and hydroformylation by rhodium catalysts. DFT/MM methods are shown, by comparison with experiment and with full quantum mechanics calculations, to allow a reasonably accurate computational study of experimentally relevant problems which otherwise would be out of reach for theoretical chemistry. [Pg.117]

In the initial rhodium-catalyzed hydrogenation experiments on substituted olefins with MonoPhos (24a) as ligand, it was found that the reaction is strongly solvent dependent. Very good enantioselectivities were obtained in the rhodium-catalyzed hydrogenation of 5 in nonprotic solvents (Table 14.5).28-31... [Pg.278]

The first example of asymmetric rhodium-catalyzed hydrogenation of prochi-ral olefins in dendrimer catalysis was reported by Togni et al., who immobilized the chiral ferrocenyl diphosphine Josiphos at the end groups of dendrimers, thus obtaining systems of up to 24 chiral metal centres in the periphery (Fig. 2) [12-14]. The fact that the catalytic properties of the dendrimer catalysts were almost identical to those of the mononuclear catalysts was interpreted as a manifestation of the independence of the individual catalytic sites in the macromolecular systems. [Pg.64]

Rhodium-Catalyzed Asymmetric Hydrogenation of Olefins. MiniPHOS (1) can be used in rhodium-catalyzed asymmetric hydrogenation of olefinic compounds. The complexation with rhodium is carried out by treatment of 1 with [Rh(nbd)2]BF4in THF (eq 2). The hydrogenation of a-(acylamino)acrylic derivatives proceeds at room temperature and an initial H2 pressure of 1 or 6 atm in the presence of the 0.2 mol% MiniPHOS-Rh complex 2. The reactions are complete within 24—48 h to afford almost enantiomerically pure a-amino acids (eq 3). Itaconic acids, enamides, and dehydro-3-ami no acids can also be hydrogenated with excellent enantioselectivity (eq 4—6). [Pg.107]

Rhodium-olefin complexes have been identified as intermediate species in rhodium-catalyzed olefin-to-olefin addition reactions (5a, 150a, 151) and olefin hydrogenation reactions (450). Although the ethylene-Rh(I) complexes are not in themselves catalysts for dimerization of ethylene, both [(C2H4)2RhCl]2 and (C2H4)2Rh( Cac) react with... [Pg.296]

Only limited data are available for the kinetics of oxo synthesis with the water-soluble catalyst HRh(CO)(TPPTS)3. The hydroformylation of 1-octene was studied in a two-phase system in presence of ethanol as a co-solvent to enhance the solubility of the olefin in the aqueous phase [115]. A rate expression was developed which was nearly identical to that of the homogeneous system, the exception being a slight correction for low hydrogen partial pressures. The lack of data is obvious and surprising at this time, when the Ruhrchemie/ Rhone-Pou-lenc process has been in operation for more than ten years [116]. Other kinetic studies on rhodium-catalyzed hydroformylation have been published, too. They involve rhodium catalysts such as [Rh(nbd)Cl]2 (nbd = norbomadiene) [117] or [Rh(SBu )(CO)P(OMe)3]2 [118], or phosphites as ligands [119, 120]. [Pg.55]

A mechanistic study of rhodium catalyzed olefin hydrogenation using monodentate... [Pg.263]


See other pages where Olefin hydrogenation rhodium-catalyzed is mentioned: [Pg.86]    [Pg.214]    [Pg.352]    [Pg.345]    [Pg.113]    [Pg.332]    [Pg.385]    [Pg.924]    [Pg.978]    [Pg.76]    [Pg.248]    [Pg.70]    [Pg.412]    [Pg.2]    [Pg.6]    [Pg.481]    [Pg.10]    [Pg.120]    [Pg.125]    [Pg.269]    [Pg.270]    [Pg.284]    [Pg.40]    [Pg.99]    [Pg.146]    [Pg.106]    [Pg.105]    [Pg.426]    [Pg.346]    [Pg.229]    [Pg.231]    [Pg.264]   
See also in sourсe #XX -- [ Pg.17 , Pg.292 , Pg.352 ]

See also in sourсe #XX -- [ Pg.17 , Pg.292 , Pg.352 ]




SEARCH



Hydrogen catalyzed

Hydrogen olefinic

Hydrogenation, catalyzed

Olefin hydrogenation

Olefin rhodium-catalyzed

Olefination catalyzed

Olefins catalyzed

Olefins catalyzed hydrogenation

Rhodium-catalyzed

© 2024 chempedia.info