Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of silyl enol ethers

Mukaiyarna-Johnson AJdoJ- Lewis acid promoted condensation of silyl enol ethers with acetals ... [Pg.87]

Fluoride promoted alkylation of silyl enol ethers Acc. Cfiem. Res. 1985, 18, 181... [Pg.87]

Silyl enol ethers are other ketone or aldehyde enolate equivalents and react with allyl carbonate to give allyl ketones or aldehydes 13,300. The transme-tallation of the 7r-allylpalladium methoxide, formed from allyl alkyl carbonate, with the silyl enol ether 464 forms the palladium enolate 465, which undergoes reductive elimination to afford the allyl ketone or aldehyde 466. For this reaction, neither fluoride anion nor a Lewis acid is necessary for the activation of silyl enol ethers. The reaction also proceed.s with metallic Pd supported on silica by a special method[301j. The ketene silyl acetal 467 derived from esters or lactones also reacts with allyl carbonates, affording allylated esters or lactones by using dppe as a ligand[302]... [Pg.352]

Preparation of o,/3-Unsaturated Carbonyl Compounds by the Reactions of Silyl Enol Ethers and Enol Acetates with Ally Carbonates... [Pg.363]

The preparation of silyl enol ethers has been reviewed. [Pg.222]

A related tert-butylation procedure in which the silyl enol ether is added to a mixture of titanium tetrachloride and tert-butyl chloride gives rise to distinctly lower yields. This is also the case if the tertiary halide is added to a mixture of silyl enol ether and titanium tetrachloride. ... [Pg.99]

For some condensations with silylated substrates as starting compounds, trimethylsilyl inflate can be used as a catalyst [103, 104, 105] Atypical example of such a reaction is the aldol type condensation of silyl enol ethers and acetals catalyzed by 1-5 mol% of trimethylsilyl inflate [103] (equation 53)... [Pg.961]

HOMO of silyl enol ether reveals most nucleophilic sites. [Pg.166]

The first asymmetric Mn(salen)-catalyzed epoxidation of silyl enol ethers was carried out by Reddy and Thornton in 1992. Results from the epoxidation of various silyl enol ethers gave the corresponding keto-alcohols in up to 62% ee Subsequently, Adam and Katsuki " independently optimized the protocol for these substrates yielding products in excellent enantioselectivity. [Pg.39]

Cyclic and acyclic silyl enol ethers can be nitrated with tetranitromethane to give ct-nitro ketones in 64-96% yield fEqs. 2.42 and 2.43. " The mechanism involves the electron transfer from the silyl enol ether to tetranitromethane. A fast homolydc conphng of the resultant cadon radical of silyl enol ether with NO leads tn ct-nitro ketones. Tetranitromethane is a neutral reagent it is commercially available or readdy prepared. " ... [Pg.16]

The combination of silyl enol ethers and fluoride ion provides more reactive anions to give alkylated nitre compounds in good yields after oxidation v/ith DDQ, as shovm in Eq. 9.22. This process provides a new method for synthesis of indoles and oxyindoles fsee Chapter 10, Symhesis of Hatarocydic Compoioids). [Pg.310]

The Lewis acid mediated addition of silyl enol ethers or silylketcne acetals to oc-alkoxyaldehydcs is the most versatile and reliable method of providing chelation control in aldol-type additions3. The stereochemical outcome is as predicted by Cram s cyclic model11 ... [Pg.566]

A combination of diethylzinc with sulfonamides 18 or 19 offers another possibility for the enantioselective acetate aldol reaction39,41. The addition of silyl enol ethers to glyoxylates can be directed in a highly enantioselective manner when mediated by the binaphthol derived titanium complex 2040. [Pg.583]

An interesting example from carbohydrate chemistry is the boron trifluoride-diethyl ether complex catalyzed nucleophilic addition of silyl enol ethers to chiral imines (from n-glyceralde-hyde or D-serinal)22. This reaction yields unsaturated y-butyrolactones with predominantly the D-arabino configuration (and almost complete Cram-type erythro selectivity). [Pg.765]

The diastereomeric ratio of the trimethylsilyl triflate catalyzed amidoalkylation of a number of silyl enol ethers at — 40 CC appears to be dependent on the substituents in the substrate87. At — 40 °C the diastereomeric ratio is shown to be kinetically controlled. On allowing the reaction mixture to warm to 20 "C slow epimerization, increasing the amount of the minor isomer, is observed. In the case of the naphthalene derivative, sodium methoxide catalyzed epimerization of the kinetic mixture [(antijsyn) 88 12] produces the thermodynamic mixture [(antijsyn) 9 91]. [Pg.819]

Amidoalkylation of silyl enol ethers with /V-acyliiiiiiiium ions containing camphanoyl-derived acyl functions (see Appendix) as the chiral auxiliary leads to optically active 2-substituted piperidine derivatives with moderate to high diastereoselectivity, depending on the chiral auxiliary and the cnol ether82 99. The auxiliary is removed by hydrolysis with base or acid. [Pg.827]

The Lewis acid induced reaction of silyl enol ethers and silyl ketene (thio)acetals with 4-acetoxyazetidinones is often used for introduction of a carbon substituent in the 4-position of the jS-lactam ring. Numerous examples are known, both with and without substituents at nitrogen, some of which are shown. [Pg.831]

The Lewis acid catalyzed reactions of silyl enol ethers with nitroalkenes have been reviewed, however the diastereoselectivity of these reactions has not been addressed17. [Pg.1018]

The most frequently encountered, and most useful, cycloaddition reactions of silyl enol ethers are Diels-Alder reactions involving silyloxybutadicncs (Chapter 18). Danishefsky (30) has reviewed his pioneering work in this area, and has extended his studies to include heterodienophiles, particularly aldehydes. Lewis acid catalysis is required in such cases, and substantial asymmetric induction can be achieved using either a chiral lanthanide catalyst or an a-chiral aldehyde. [Pg.66]

Rhodium-catalysed addition (10) of hydridosilanes (Chapter 17) to a/3-unsaturated carbonyl compounds can be performed regioselectively, to afford either the product of 1,2-addition, or, perhaps more usefully, that of 1,4-addition, i.e. the corresponding silyl enol ether this latter process is an excellent method for the regiospecific generation of silyl enol ethers. Of all catalyst systems investigated, tris(triphenylphosphine)rhodium(l) chloride proved to be the best. [Pg.146]

The reactivity pattern (1) of silyl enol ethers and ketene acetals is based largely on their synthetic equivalence to enolate anions. Recently, a different spectrum of behaviour has been revealed, particularly in those reactions that involve direct reaction without prior generation of the enolate anion. Indeed, the historic development of silyl enol ethers can be seen in three separate phases, involving... [Pg.147]

Vinylic lithium reagents (26) react with silyl peroxides to give high yields of silyl enol ethers with retention of configuration. Since the preparation of 26 from vinylic halides (12-37) also proceeds with retention, the overall procedure is a... [Pg.796]

In the case of silyl enol ethers the inner bond can be cleaved with FeCl3, giving a ring-enlarged (J-chloro ketone Ito, Y Fujii, S. Saegusa, T. J. Org. Chem., 1976,41,2073 Org. Synth. VI, 327. [Pg.1168]

Among the preformed enol derivatives used in this way have been enolates of magnesium, lithium, titanium, zirconium, and tin, ° silyl enol ethers, enol borinates,and enol borates, R CH=CR"—OB(OR)2. The nucleophilicity of silyl enol ethers has been examined. In general, metallic Z enolates give the syn (or erythro) pair, and this reaction is highly useful for the diastereoselective synthesis of these products. The ( ) isomers generally react nonstereoselectively. However, anti (or threo) stereoselectivity has been achieved in a number of cases, with titanium enolates, with magnesium enolates, with certain enol bor-inates, and with lithium enolates at — 78°C. ... [Pg.1221]

Dimerization of silyl enol ethers or of lithium enolates... [Pg.1665]

The oxidation of silyl enol ethers 111 with palladium(n) acetate is a convenient nnethod for the preparation of synthetically useful 2,6-disubstituted 2,3-dihydro-4-pyridones 112 <95TL(36)9449>. [Pg.243]

Wiles, C., Watts, P., Haswell, S. J., PoMBO-ViLiAR, E., The aldol reaction of silyl enol ethers within a micro reactor. [Pg.121]

Figure 4.85 Flow configuration for the aldol reaction of silyl enol ethers in a mixing-tee chip micro reactor [15],... Figure 4.85 Flow configuration for the aldol reaction of silyl enol ethers in a mixing-tee chip micro reactor [15],...
In 1991, Kobayashi el al. prepared novel chiral S/N ligands for the tin-mediated aldol reaction of silyl enol ethers with aldehydes. As an example, the reaction of benzaldehyde afforded the expected syn aldol product as the major product with a good yield and an enantioselectivity of up to 92% ee (Scheme 10.26). Moreover, other aldehydes such as substituted benzaldehydes or aliphatic unsaturated aldehydes were converted into their corresponding aldol products with enantioselectivities of more than 90% ee. It was checked that the corresponding diamine ligands provided less active complexes for the same reactions. [Pg.314]

The Mukaiyama aldol reaction refers to Lewis acid-catalyzed aldol addition reactions of silyl enol ethers, silyl ketene acetals, and similar enolate equivalents,48 Silyl enol ethers are not sufficiently nucleophilic to react directly with aldehydes or ketones. However, Lewis acids cause reaction to occur by coordination at the carbonyl oxygen, activating the carbonyl group to nucleophilic attack. [Pg.82]


See other pages where Of silyl enol ethers is mentioned: [Pg.44]    [Pg.104]    [Pg.363]    [Pg.385]    [Pg.620]    [Pg.945]    [Pg.276]    [Pg.63]    [Pg.63]    [Pg.144]    [Pg.660]    [Pg.777]    [Pg.1024]    [Pg.320]    [Pg.30]   
See also in sourсe #XX -- [ Pg.699 , Pg.757 ]




SEARCH



Aldol additions of silyl enol ethers

Aldol condensation of silyl enol ethers

Aldol reactions of silyl enol ethers

Alkylation of enol silyl ethers

Claisen rearrangement of ester silyl enol ethers

Conjugate addition of silyl enol ethers

Coupling of silyl enol ethers

Enol silyl ethers of acylsilanes

Enolates silylation

Lewis acid catalysis in reactions of silyl enol ethers

Michael addition Of silyl enol ethers

Mukaiyama reaction use of silyl enol ethers

Oxidation of silyl enol ethers

Oxidative Functionalization of Silyl Enol Ethers

P-Lactams use of silyl enol ethers

Sharpless asymmetric epoxidation of ester silyl enol ethers

Silyl enol ethers

Silyl enol ethers of ester enolates

Silyl enolate

Silyl enolates

Silylation of Enolates

© 2024 chempedia.info