Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of krypton

Such isothemis are shown in figure B 1,26.4 for the physical adsorption of krypton and argon on graphitized carbon black at 77 K [13] and are examples of type VI isothemis (figure B 1.26.3 ). Equation (B1.26.7)) further... [Pg.1872]

It also forms compounds known as carbonyls with many metals. The best known is nickel tetracarbonyl, Ni(CO)4, a volatile liquid, clearly covalent. Here, donation of two electrons by each carbon atom brings the nickel valency shell up to that of krypton (28 -E 4 x 2) the structure may be written Ni( <- 0=0)4. (The actual structure is more accurately represented as a resonance hybrid of Ni( <- 0=0)4 and Ni(=C=0)4 with the valency shell of nickel further expanded.) Nickel tetracarbonyl has a tetrahedral configuration,... [Pg.179]

Following Bartlett s discovery of xenon hexafluoroplatinate(VI), xenon and fluorine were found to combine to give several volatile, essentially covalent fluorides, and at least one fluoride of krypton has been obtained. From the xenon fluorides, compounds containing xenon-oxygen bonds have been made much of the known chemistry of xenon is set out in Figure 12.1. [Pg.355]

Krypton is present in the air to the extent of about 1 ppm. The atmosphere of Mars has been found to contain 0.3 ppm of krypton. Solid krypton is a white crystalline substance with a face-centered cubic structure which is common to all the "rare gases."... [Pg.100]

Naturally occurring krypton contains six stable isotopes. Seventeen other unstable isotopes are now recognized. The spectral lines of krypton are easily produced and some are very sharp. While krypton is generally thought of as a rare gas that normally does not combine with other elements to form compounds, it now appears that the existence of some krypton compounds is established. Krypton difluoride has been prepared in gram quantities and can be made by several methods. A higher fluoride of krypton and a salt of an oxyacid of krypton also have been... [Pg.100]

Krypton-85 has been used for over 25 years to measure the density of paper as it is amanufactured. The total weight of paper can be controlled to a very accurate degree by the use of krypton 85 and other radioactive nuclides. The common name for such a device is a beta gague that can measure the thickness of a material. [Pg.150]

Following the pioneer work of Beebe in 1945, the adsorption of krypton at 77 K has come into widespread use for the determination of relatively small surface areas because its saturation vapour pressure is rather low (p° 2Torr). Consequently the dead space correction for unadsorbed gas is small enough to permit the measurement of quite small adsorption with reasonable precision. Estimates of specific surface as low as 10 cm g" have been reported. Unfortunately, however, there are some complications in the interpretation of the adsorption isotherm. [Pg.77]

The working temperature, 77 K, is well below the triple point of krypton, 116 K, but if the solid is taken as the reference state the isotherm shows an unusually sharp upward turn at the high-pressure end. The usual practice, following Beebe, is therefore to take p° as the saturation vapour pressure of the supereooled liquid (p° = 2-49 Torr at 77-35 K and 27-5 Torr at 90-2 K). [Pg.77]

The step-like nature of krypton isotherms on highly uniform surfaces is referred to in Section 2.10. [Pg.79]

The existence of neon (Greek neos, new) was predicted, as was the existence of heavier members of the group. In 1898 krypton (Greek kTyptos, hidden) was discovered by spectroscopic examination of the residue from a sample of Hquid air. Neon was discovered in the same year. A month later, xenon (Greek xenos, strange) was isolated from the residue left after distillation of krypton. [Pg.4]

Separation of krypton and xenon from spent fuel rods should afford a source of xenon, technical usage of which is continuously growing (84). As of this writing, however, reprocessing of spent fuel rods is a pohtical problem (see Nuclearreactors). Xenon from fission has a larger fraction of the heavier isotopes than xenon from the atmosphere and this may affect its usefulness in some appHcations. [Pg.12]

Adsorption of Radionuclides. Other appHcations that depend on physical adsorption include the control of krypton and xenon radionuchdes from nuclear power plants (92). The gases are not captured entirely, but their passage is delayed long enough to allow radioactive decay of the short-hved species. Highly rnicroporous coconut-based activated carbon is used for this service. [Pg.535]

The chemistry of xenon is much more extensive than that of any other noble gas. Only one binary compound of krypton. KrF2, has been prepared. It is a colorless solid that decomposes at room temperature. The chemistry of radon is difficult to study because all its isotopes are radioactive. Indeed, the radiation given off is so intense that it decomposes any reagent added to radon in an attempt to bring about a reaction. [Pg.190]

For the gas hydrates it is not possible to make an entirely unambiguous comparison of the observed heat of hydrate formation from ice (or water) and the gaseous solute with the calculated energy of binding of the solute in the ft lattice, because AH = Hfi—Ha is not known. If one assumes AH = 0, it is found that the hydrates of krypton, xenon, methane, and ethane have heats of formation which agree within the experimental error with the energies calculated from Eq. 39 for details the reader is referred to ref. 30. [Pg.34]

Most surface area measurements are based on the interpretation of the low temperature equilibrium adsorption of nitrogen or of krypton on the solid using the BET theory [33,269,276—278]. There is an extensive literature devoted to area determinations from gas adsorption data. Estimates of surfaces may also be obtained from electron micrographs, X-ray diffraction line broadening [279] and changes in the catalytic activity of the solid phase [ 280]. [Pg.28]

The root mean square speed of gaseous methane molecules, CH4, at a certain temperature was found to be 550. nvs What is the root mean square speed of krypton atoms at the same temperature ... [Pg.296]

Krypton crystallizes with a face-centered cubic unit cell of edge 559 pm. (a) What is the density of solid krypton (b) What is the atomic radius of krypton (c) What is the volume of one krypton atom (d) What percentage of the unit cell is empty space if each atom is treated as a hard sphere ... [Pg.329]

Chlorine, the next most electronegative element, reacts with xenon to form transient species that decompose at room temperature. Krypton forms KtF2 and a few other compounds, but the chemishy of krypton is much more restricted than that of xenon. [Pg.627]

Sir William Ramsay (1852-1916) and Morris William Travers (1872-1961). Enriched by fractional distillation of krypton and identified spectroscopically as a new element. [Pg.62]

The elements helium, neon, argon, krypton, xenon, and radon—known as the noble gases—almost always have monatomic molecules. Their atoms are not combined with atoms of other elements or with other atoms like themselves. Prior to 1962, no compounds of these elements were known. (Since 1962, some compounds of krypton, xenon, and radon have been prepared.) Why are these elements so stable, while the elements with atomic numbers 1 less or 1 more are so reactive The answer lies in the electronic structures of their atoms. The electrons in atoms are arranged in shells, as described in Sec. 3.6. (A more detailed account of electronic structure will be presented in Chap. 17.)... [Pg.89]

By gaining one electron, the bromine atom attains the electron configuration of krypton and also attains a charge of 1-. The two ions expected are therefore Ca + and Br. Since calcium bromide as a whole cannot have any net charge, there must be two bromide ions for each calcium ion hence, the formula is CaBr2. [Pg.375]

The conclusions from this work were (i) that the mechanism that operates is of wide applicability, (ii) that exchange proceeds by either the dissociative chemisorption of benzene or by the dissociation of benzene which has previously been associatively chemisorbed, and (iii) that M values of about 2 indicate that further dissociation of surface-area measurements. Surface areas of metal films determined by the chemisorption of hydrogen, oxygen, carbon monoxide, or by physical adsorption of krypton or of xenon concur... [Pg.147]


See other pages where Of krypton is mentioned: [Pg.140]    [Pg.55]    [Pg.78]    [Pg.773]    [Pg.4]    [Pg.11]    [Pg.15]    [Pg.16]    [Pg.16]    [Pg.16]    [Pg.25]    [Pg.25]    [Pg.25]    [Pg.75]    [Pg.480]    [Pg.1828]    [Pg.293]    [Pg.293]    [Pg.294]    [Pg.773]    [Pg.844]    [Pg.92]    [Pg.343]    [Pg.59]    [Pg.83]    [Pg.130]    [Pg.915]    [Pg.132]    [Pg.21]   
See also in sourсe #XX -- [ Pg.160 , Pg.164 , Pg.172 , Pg.174 , Pg.190 , Pg.194 ]




SEARCH



Applications of Krypton

Compounds of argon, krypton and radon

Compounds of krypton and radon

Hydration of krypton

Krypton

Krypton and xenon isotope systematics of arc-related volcanism

Kryptonates

Recovery of Krypton and Xenon

Thermodynamic Properties of Krypton

© 2024 chempedia.info